Patents by Inventor Nicola Diolaiti

Nicola Diolaiti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10188472
    Abstract: In a coupled control mode, the surgeon directly controls movement of an associated slave manipulator with an input device while indirectly controlling movement of one or more non-associated slave manipulators, in response to commanded motion of the directly controlled slave manipulator, to achieve a secondary objective. By automatically performing secondary tasks through coupled control modes, the system's usability is enhanced by reducing the surgeon's need to switch to another direct mode to manually achieve the desired secondary objective. Thus, coupled control modes allow the surgeon to better focus on performing medical procedures and to pay less attention to managing the system.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: January 29, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nicola Diolaiti, David Q. Larkin, Catherine J. Mohr
  • Publication number: 20180353204
    Abstract: An instrument manipulator and a robotic surgical system including an instrument manipulator are provided. In one embodiment, an instrument manipulator includes a plurality of independent actuator drive modules, each of the plurality of actuator drive modules including an actuator output, wherein each of the actuator outputs are configured to independently actuate a corresponding actuator input of a surgical instrument without force input from another actuator output. The instrument manipulator further includes a frame housing the plurality of independent actuator drive modules, the frame including a distal end from which each of the actuator outputs distally protrude for engaging the corresponding actuator inputs of the surgical instrument.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 13, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC
    Inventors: Todd R. Solomon, Thomas G. Cooper, Eugene F. Duval, Nicola Diolaiti, Daniel H. Gomez, Robert E, Holop, Anthony K. McGrogan, Craig R. Ramstad, Thoeodore W, Rogers
  • Patent number: 10149729
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: December 11, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Patent number: 10143525
    Abstract: A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: December 4, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Bruce Michael Schena, Roman L. Devengenzo, Gary C. Ettinger, Eugene F. Duval, Nicola Diolaiti, Daniel H. Gomez
  • Patent number: 10052167
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated position of the joints.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: August 21, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Publication number: 20180214014
    Abstract: A medical robotic system includes an entry guide with articulatable instruments such as surgical tools and a camera extending out of its distal end. The camera instrument is manipulatable by a camera manipulator, which has a first mechanism for pivoting a focal point of the camera instrument about a pivot of the camera instrument and a second mechanism for positioning the pivot within a three-dimensional space in response to translational commands received from one or a coupled pair of input devices. The system also includes a controller which is configured to receive sensed movement of the input devices, and cause actuation of the first mechanism in response to the sensed movement if the system is in an orientational mode and cause actuation of the second mechanism in response to the sensed movement if the system is in a translational mode.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC
    Inventor: Nicola Diolaiti
  • Publication number: 20180214176
    Abstract: An instrument manipulator and a robotic surgical system including an instrument manipulator are provided. In one embodiment, an instrument manipulator includes a plurality of independent actuator drive modules, each of the plurality of actuator drive modules including an actuator output, wherein each of the actuator outputs are configured to independently actuate a corresponding actuator input of a surgical instrument without force input from another actuator output. The instrument manipulator further includes a frame housing the plurality of independent actuator drive modules, the frame including a distal end from which each of the actuator outputs distally protrude for engaging the corresponding actuator inputs of the surgical instrument.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 2, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC
    Inventors: Todd R. Solomon, Thomas G. Cooper, Eugene F. Duval, Nicola Diolaiti, Daniel H. Gomez, Robert E. Holop, Anthony K. McGrogan, Craig R. Ramstad, Thoeodore W. Rogers
  • Publication number: 20180206924
    Abstract: To perform a tool exchange in a medical robotic system, tool is retracted back into an entry guide from a deployed position and pose so that an assistant in the operating room may replace it with a different tool. While the tool is being retracted back towards the entry guide by user action, its configuration is changed to an entry pose while avoiding collisions with other objects so that it may fit in the entry guide. After the tool exchange is completed, a new tool is inserted in the entry guide and extended out of the guide by user action to the original position of the old tool prior to its retraction into the entry guide while the tool's controller assists the user by reconfiguring the new tool so as to resemble the original deployed pose of the old tool prior to its retraction into the entry guide.
    Type: Application
    Filed: March 22, 2018
    Publication date: July 26, 2018
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC
    Inventors: Daniel H. Gomez, Nicola Diolaiti, David Q. Larkin, Tabish Mustufa, Probal Mitra, Paul E. Lilagan
  • Patent number: 9955996
    Abstract: An instrument manipulator and a robotic surgical system including an instrument manipulator are provided. In one embodiment, an instrument manipulator includes a plurality of independent actuator drive modules, each of the plurality of actuator drive modules including an actuator output, wherein each of the actuator outputs are configured to independently actuate a corresponding actuator input of a surgical instrument without force input from another actuator output. The instrument manipulator further includes a frame housing the plurality of independent actuator drive modules, the frame including a distal end from which each of the actuator outputs distally protrude for engaging the corresponding actuator inputs of the surgical instrument.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: May 1, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Todd R. Solomon, Thomas G. Cooper, Eugene F. F. Duval, Nicola Diolaiti, Daniel H. Gomez, Robert E. Holop, Anthony K. McGrogan, Craig R. Ramstad, Theodore W. Rogers
  • Patent number: 9956044
    Abstract: To perform a tool exchange in a medical robotic system, tool is retracted back into an entry guide from a deployed position and pose so that an assistant in the operating room may replace it with a different tool. While the tool is being retracted back towards the entry guide by user action, its configuration is changed to an entry pose while avoiding collisions with other objects so that it may fit in the entry guide. After the tool exchange is completed, a new tool is inserted in the entry guide and extended out of the guide by user action to the original position of the old tool prior to its retraction into the entry guide while the tool's controller assists the user by reconfiguring the new tool so as to resemble the original deployed pose of the old tool prior to its retraction into the entry guide.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: May 1, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Daniel H. Gomez, Nicola Diolaiti, David Q. Larkin, Paul E. Lilagan, Probal Mitra, Tabish Mustufa
  • Patent number: 9955859
    Abstract: A medical robotic system includes an entry guide with articulatable instruments such as surgical tools and a camera extending out of its distal end. The camera instrument is manipulatable by a camera manipulator, which has a first mechanism for pivoting a focal point of the camera instrument about a pivot of the camera instrument and a second mechanism for positioning the pivot within a three-dimensional space in response to translational commands received from one or a coupled pair of input devices. The system also includes a controller which is configured to receive sensed movement of the input devices, and cause actuation of the first mechanism in response to the sensed movement if the system is in an orientational mode and cause actuation of the second mechanism in response to the sensed movement if the system is in a translational mode.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: May 1, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Nicola Diolaiti
  • Patent number: 9949799
    Abstract: Methods, apparatus, and systems for performing minimally invasive surgery through an aperture of a patient. In accordance with a method, parameters are received from an input device associated with a surgeon, the parameters indicating a desired state of an end effector of a surgical instrument oriented through the aperture. The surgical instrument is included in a mechanical assembly having a first set of joints. Instructions are then computed for controlling the mechanical assembly using the received parameters by computing instructions for controlling a second set joints, the second set of joints including the first set of joints and an additional joint, the additional joint being absent from the mechanical assembly. The mechanical assembly is then driven so as to move the end effector toward the desired state based on the computed instructions.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: April 24, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Pushkar Hingwe, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner
  • Patent number: 9861447
    Abstract: Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 9, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Arjang M. Hourtash, Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Amy E. Kerdok, Michael Turner
  • Publication number: 20170340397
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Application
    Filed: August 15, 2017
    Publication date: November 30, 2017
    Inventors: Niels SMABY, Gregory W. DACHS, II, Nicola DIOLAITI, Pushkar HINGWE, Thomas R. NIXON, Bruce M. SCHENA, Nitish SWARUP
  • Publication number: 20170304012
    Abstract: A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Inventors: Marc E. Tognaccini, Daniel H. Gomez, Nicola Diolaiti, Tabish Mustufa, Probal Mitra, Paul E. Lilagan
  • Patent number: 9782230
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 10, 2017
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Patent number: 9757149
    Abstract: An entry guide tube and cannula assembly, a surgical system including the assembly, and a method of surgical instrument insertion are provided. In one embodiment, the assembly includes a cannula having a proximal portion that operably couples to an accessory clamp of a manipulator arm, and a distal tubular member coupled to the proximal portion, the tubular member having an opening for passage of at least one instrument shaft. The assembly also includes an entry guide tube rotatably coupled to the proximal portion of the cannula, the entry guide tube including a plurality of channels for passage of a plurality of instrument shafts, wherein the entry guide tube is rotatably driven relative to the proximal portion of the cannula by rotation of at least one instrument shaft about a longitudinal axis of the entry guide tube.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: September 12, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Thomas G. Cooper, Jeffrey D. Brown, Nicola Diolaiti, Eugene F. Duval, Daniel H. Gomez, Robert Elliot Holop, Paul E. Lilagan, Anthony K. McGrogan, Craig R. Ramstad
  • Patent number: 9717563
    Abstract: A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 1, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Marc E. Tognaccini, Daniel H. Gomez, Nicola Diolaiti, Tabish Mustufa, Probal Mitra, Paul E. Liligan
  • Publication number: 20170173788
    Abstract: A medical robotic system includes an entry guide with articulated instruments extending out of its distal end. A controller is configured to command manipulation of one of the articulated instruments towards a state commanded by operator manipulation of an input device while commanding sensory feedback to the operator indicating a difference between the commanded state and a preferred pose of the articulated instrument, so that the sensory feedback serves to encourage the operator to return the articulated instrument back to its preferred pose.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Nicola Diolaiti, Paul E. Lilagan
  • Publication number: 20170143437
    Abstract: Methods, apparatus, and systems for operating a surgical system. In accordance with a method, a position of a surgical instrument is measured, the surgical instrument being included in a mechanical assembly having a plurality of joints and a first number of degrees of freedom, the position of the surgical instrument being measured for each of a second number of degrees of freedom of the surgical instrument. The method further includes estimating a position of each of the joints, where estimating the position of each joint includes applying the position measurements to at least one kinematic model of the mechanical assembly, the kinematic model having a third number of degrees of freedom greater than the first number of degrees of freedom. The method further includes controlling the mechanical assembly based on the estimated. position of the joints.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Samuel Kwok Wai Au, Raymond A. Bonneau, Nicola Diolaiti, Pushkar Hingwe, Arjang M. Hourtash, Amy E. Kerdok, Michael Turner