Patents by Inventor Nicolas Barré

Nicolas Barré has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11231551
    Abstract: An optical device is formed of a plurality of optical parts arranged on a carrier, at least one optical element of which has a main face provided with a first microstructured zone for intercepting incident luminous radiation propagating along a first determined optical path, the first microstructured zone spatially modifying the phase of the incident luminous radiation according to a determined spatial profile. The first microstructured zone is used to form, via a plurality of reflections or transmissions off/through the one or more optical elements, transformed luminous radiation. The optical device comprises an input stage for guiding the injection of positioning luminous radiation, along a second optical path, and the main surface of the optical element includes a second microstructured zone that is configured to reflect the positioning luminous radiation and to back-propagate the positioning radiation along the second optical path.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: January 25, 2022
    Assignee: CAILabs
    Inventors: Guillaume Labroille, Nicolas Barré
  • Publication number: 20200341198
    Abstract: An optical device is formed of a plurality of optical parts arranged on a carrier, at least one optical element of which has a main face provided with a first microstructured zone for intercepting incident luminous radiation propagating along a first determined optical path, the first microstructured zone spatially modifying the phase of the incident luminous radiation according to a determined spatial profile. The first microstructured zone is used to form. via a plurality of reflections or transmissions off/through the one or more optical elements, transformed luminous radiation. The optical device comprises an input stage for guiding the injection of positioning luminous radiation, along a second optical path, and in that the main surface of the optical element includes a second microstructured zone that is configured to reflect the positioning luminous radiation and to back-propagate the positioning radiation along the second optical path.
    Type: Application
    Filed: December 17, 2018
    Publication date: October 29, 2020
    Inventors: Guillaume Labroille, Nicolas Barré
  • Patent number: 10382133
    Abstract: An optical phase-shifting component is used for shifting the phase and modifying the intensity of the light beam injected into the fiber (MMF2). The component is inserted upstream or downstream of, or at an intermediate position in, the fiber. The component uses two mirrors and multiple beam paths between the mirrors. An optical phase-shifting structure (e.g., a reflective phase mask with a structured surface, which can be a mirror) is effective at each reflection of the beam and gradually splits the beam into faster and slower propagation modes. The faster modes are subjected to one or more reflections more than the slower modes and are thereby decelerated. The fast and slow modes are combined again and are then transmitted in a multimode fiber in which the modes have different propagation speeds. The difference in the propagation speeds is thus at least partly compensated.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: August 13, 2019
    Assignee: CAILabs
    Inventors: Jean-François Morizur, Nicolas Barre
  • Publication number: 20190097723
    Abstract: An optical phase-shifting component is used for shifting the phase and modifying the intensity of the light beam injected into the fiber (MMF2). The component is inserted upstream or downstream of, or at an intermediate position in, the fiber. The component uses two mirrors and multiple beam paths between the mirrors. An optical phase-shifting structure (e.g., a reflective phase mask with a structured surface, which can be a mirror is effective at each reflection of the beam and gradually splits the beam into faster and slower propagation modes. The faster modes are subjected to one or more reflections more than the slower modes and are thereby decelerated. The fast and slow modes are combined again and are then transmitted in a multimode fiber in which the modes have different propagation speeds. The difference in the propagation speeds is thus at least partly compensated.
    Type: Application
    Filed: March 9, 2017
    Publication date: March 28, 2019
    Inventors: Jean-François Morizur, Nicolas Barre