Patents by Inventor Nicolas J. Bright

Nicolas J. Bright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040117054
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas J. Bright
  • Publication number: 20040058545
    Abstract: A method and an apparatus for enhancement of the for measuring resistance-based features of a substrate is provided. The apparatus includes a sensor configured to detect a signal produced by a eddy current generated electromagnetic field. The magnetic field enhancing source is positioned to the alternative side of the object under measurement relative to the sensor to enable the sensitivity enhancing action. The sensitivity enhancing source increases the intensity of the eddy current generated in the object under measurement, and as a result the sensitivity of the sensor. A system enabled to determine a thickness of a layer and a method for determining a resistance-based feature characteristic are also provided.
    Type: Application
    Filed: September 25, 2002
    Publication date: March 25, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20040011462
    Abstract: A semiconductor processing system is provided. The system includes a sensor configured to detect a signal representing a thickness of a film disposed on a surface of a substrate. A first nozzle configured to apply a first fluid to a surface of a polishing pad is included. A fluid restraining device located upstream from the first nozzle is provided. The fluid restraining device is configured to evenly distribute the slurry over the surface of the polishing pad. A second nozzle located upstream from the fluid restraining device is included. The second nozzle is configured to apply a second fluid to the evenly distributed slurry. A CMP system and a method for applying differential removal rates to a surface of a substrate are also provided.
    Type: Application
    Filed: June 18, 2003
    Publication date: January 22, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20040002171
    Abstract: A semiconductor processing system is provided. The semiconductor processing system includes a first sensor configured to isolate and measure a film thickness signal portion for a wafer having a film disposed over a substrate. A second sensor is configured to detect a film thickness dependent signal in situ during processing, i.e. under real process conditions and in real time. A controller configured to receive a signal from the first sensor and a signal from the second sensor. The controller is capable of determining a calibration coefficient from data represented by the signal from the first sensor. The controller is capable of applying the calibration coefficient to the data associated with the second sensor, wherein the calibration coefficient substantially eliminates inaccuracies introduced to the film thickness dependent signal from the substrate. A method for calibrating an eddy current sensor is also provided.
    Type: Application
    Filed: June 18, 2003
    Publication date: January 1, 2004
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20010010970
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 2, 2001
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6267545
    Abstract: An interlocked control system is provided for dual sided slot valves contained in a vacuum body between each of a plurality of adjacent process and transport modules. Separate valves are provided for each of two valve body slots, one body slot being separately closed or opened independently of the other. The separate valves allow a vacuum in the transport module while an adjacent process module is open to the atmosphere for servicing. Under control of the system, the valve may allow separate operation of the transport module and certain ones of the process modules, while a selected one of the process modules is in either a maintenance state or a locked out state for servicing. The system includes a separate controller for the transport module and a separate controllers for the process modules. A control interface coordinates the flow of signals between the controllers and local devices, and system user interfaces provide inputs to the control system from operational and service personnel.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: July 31, 2001
    Assignee: Lam Research Corporation
    Inventors: Benjamin W. Mooring, Nicolas J. Bright
  • Publication number: 20010009803
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Application
    Filed: February 16, 2001
    Publication date: July 26, 2001
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6251770
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: June 26, 2001
    Assignees: Lam Research Corp., Novellus Systems, Inc.
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6095741
    Abstract: A dual sided slot valve is in a vacuum body between adjacent process and transport modules. Separate valves are provided for each of two valve body slots, one body slot being separately closed or opened independently of the other. The separate valves allow a vacuum in the transport module while an adjacent process module is open to the atmosphere for servicing. The valve allows access to an open valve for servicing the open valve in that one actuator motor stops the valve in an open, but not vertically-spaced, position relative to the respective slot. The open valve is more easily reached by a gloved hand of a service worker. A separate actuator motor moves the valve vertically down from the open position and away from the slot to expose the sealing surface around the slot for cleaning. The vertical distance of the vertically-moved valve from an access opening makes it difficult for the worker's glove to reach the valve for service.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: August 1, 2000
    Assignee: Lam Research Corporation
    Inventors: Tony R. Kroeker, Benjamin W. Mooring, Nicolas J. Bright
  • Patent number: 6083412
    Abstract: The invention is embodied in a method of operating a plasma etch reactor, consisting of introducing a gas into the reactor which disassociates as a plasma into an etch species which etches oxide films on a work piece in the reactor and a non-etching species combinable with the etch species into an etch-preventing polymer condensable onto the work piece below a characteristic deposition temperature, providing an interior wall comprising a material which scavenges the etching species, and maintaining a temperature of the interior wall above the deposition temperature.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: July 4, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rice, Jeffrey Marks, David W Groechel, Nicolas J Bright
  • Patent number: 5770099
    Abstract: The invention is embodied in a method of operating a plasma etch reactor, consisting of introducing a gas into the reactor which disassociates as a plasma into an etch species which etches oxide films on a work piece in the reactor and a non-etching species combinable with the etch species into an etch-preventing polymer condensable onto the work piece below a characteristic deposition temperature, providing an interior wall comprising a material which scavenges the etching species, and maintaining a temperature of the interior wall above the deposition temperature.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: June 23, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rice, Jeffrey Marks, David W. Groechel, Nicolas J. Bright
  • Patent number: 5583737
    Abstract: An electrostatic chuck for holding a wafer in a plasma processing chamber, the chuck including a pedestal having a top surface, an internal manifold for carrying a cooling gas, and a first plurality of holes leading from the internal manifold toward said top surface; and a dielectric layer on the top surface of the pedestal. The dielectric layer has a top side and second plurality of holes, each of which is aligned with a different one of the holes of the first plurality of holes in the pedestal. The first and second holes form a plurality of passages extending from the internal manifold to the top side of the dielectric layer and through which the cooling gas is supplied to the backside of the wafer. Each of the first holes and the second hole aligned therewith form a different one of the plurality of passages.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: December 10, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John R. Trow, Joshua Chiu-Wing Tsui, Craig A. Roderick, Nicolas J. Bright, Jeffrey Marks, Tetsuya Ishikawa, Jian Ding
  • Patent number: 5539609
    Abstract: An electrostatic chuck for holding a wafer in a plasma processing chamber, the chuck including a pedestal having a top surface, an internal manifold for carrying a cooling gas, and a first plurality of holes leading from the internal manifold toward said top surface; and a dielectric layer on the top surface of the pedestal. The dielectric layer has a top side and second plurality of holes, each of which is aligned with a different one of the holes of the first plurality of holes in the pedestal. The first and second holes form a plurality of passages extending from the internal manifold to the top side of the dielectric layer and through which the cooling gas is supplied to the backside of the wafer. Each of the first holes and the second hole aligned therewith form a different one of the plurality of passages.
    Type: Grant
    Filed: October 14, 1993
    Date of Patent: July 23, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John R. Trow, Joshua C.-W. Tsui, Craig A. Roderick, Nicolas J. Bright, Jeffrey Marks, Tetsuya Ishikawa, Jian Ding
  • Patent number: 5477975
    Abstract: The invention is embodied in a method of operating a plasma etch reactor, consisting of introducing a gas into the reactor which disassociates as a plasma into an etch species which etches oxide films on a work piece in the reactor and a non-etching species combinable with the etch species into an etch-preventing polymer condensable onto the work piece below a characteristic deposition temperature, providing an interior wall comprising a material which scavenges the etching species, and maintaining a temperature of the interior wall above the deposition temperature.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: December 26, 1995
    Inventors: Michael Rice, Jeffrey Marks, David W. Groechel, Nicolas J. Bright
  • Patent number: 5350479
    Abstract: An electrostatic chuck for holding an article to be processed in a plasma reaction chamber and comprising a metal pedestal coated with a layer of dielectric material in which is formed a cooling gas distribution system for passing and distributing a cooling gas between the upper surface of the layer and the article when supported on the pedestal. The gas distribution system comprises a plurality of intersecting grooves formed entirely in the upper surface of the layer with small gas distribution holes through intersections of the grooves over upper ends of cooling gas receiving holes formed in an underside of the pedestal.
    Type: Grant
    Filed: December 2, 1992
    Date of Patent: September 27, 1994
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, John R. Trow, Joshua C. W. Tsui, Craig A. Roderick, Nicolas J. Bright, Jeffrey Marks, Tetsuya Ishikawa