Patents by Inventor Nicolas Marx

Nicolas Marx has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11777082
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 3, 2023
    Assignees: Showa Denko K.K., Umicore
    Inventors: Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
  • Publication number: 20230108811
    Abstract: A silicon-based powder suitable for use in a negative electrode of a battery. The silicon-based powder comprises silicon-based particles and non-silicon-based particles. The silicon-based particles have a number-based particle size distribution with a dS50 value, being at most 200 nm. The silicon-based powder has an oxygen content of at most 20% by weight and comprises one or more elements M from a group of metals that have a Standard Gibbs free energy of formation at a temperature T of the oxide from their zerovalent state which is lower than the Standard Gibbs free energy of formation at the same temperature T of SiO2 from zerovalent silicon. The temperature T is equal to or higher than 573K and lower than 1373K. The content of said one or more elements M in the silicon-based powder is at least 0.10% of the content of Si by weight in said silicon-based powder.
    Type: Application
    Filed: February 9, 2021
    Publication date: April 6, 2023
    Inventors: Boaz MOEREMANS, Nicolas MARX, Jean-Sébastien BRIDEL, Stijn PUT
  • Patent number: 11588148
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 21, 2023
    Assignees: Umicore, Showa Denko K.K.
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx, Arihiro Muto, Nobuaki Ishii, Masataka Takeuchi
  • Patent number: 11502290
    Abstract: A composite powder for use in the negative electrode of a battery, whereby the composite powder comprises composite particles, whereby the composite particles comprise a matrix material and silicon, whereby the composite particles have a particle size distribution having a d10 and a d90, whereby over at least part of the size range from d10 to d90 the composite particles have a size-dependent silicon content. Preferably a finer fraction of the composite powder has an average particle size D1 and a silicon content S1 and a coarser fraction of the composite powder has an average particle size D2 and a silicon content S2, whereby a size dependence factor F is defined as follows F=(S2?S1)/(D2?D1), whereby the absolute value of the size dependence factor F is at least 0.04 wt % silicon/?m.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 15, 2022
    Assignee: UMICORE
    Inventors: Nicolas Marx, Stijn Put, Jean-Sébastien Bridel
  • Publication number: 20220352493
    Abstract: A powder for use in a negative electrode of a battery, said powder comprising particles, wherein the particles comprise a carbonaceous matrix material and silicon-based domains dispersed in the carbonaceous matrix material, wherein the particles further comprise pores wherein at least 1000 cross-sections of pores comprised in a cross-section of the powder satisfy optimized conditions of size and size distribution, allowing the battery containing such a powder to achieve a superior cycle life and a production method of such a powder.
    Type: Application
    Filed: October 5, 2020
    Publication date: November 3, 2022
    Inventors: Boaz MOEREMANS, Kun FENG, Michal TULODZIECKI, Jean-Sébastien BRIDEL, Nicolas MARX, Stijn PUT
  • Patent number: 11450849
    Abstract: An active material powder for use in a negative electrode of a battery, wherein the active material powder comprises active material particles, wherein the active material particles comprise silicon-based particles, wherein when said active material powder is crossed by a plane, then at least 65% of the discrete cross-sections of the silicon-based particles included in that plane, satisfy optimized conditions of shape and size, allowing the battery containing such an active material powder to achieve a superior cycle life and a production method of such an active material powder.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: September 20, 2022
    Assignee: UMICORE
    Inventors: Nicolas Marx, Stijn Put, Jean-Sébastien Bridel, Boaz Moeremans
  • Publication number: 20220209223
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 30, 2022
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Publication number: 20210083271
    Abstract: A composite powder for use in the negative electrode of a battery, whereby the composite powder comprises composite particles, whereby the composite particles comprise a matrix material and silicon, whereby the composite particles have a particle size distribution having a d10 and a d90, whereby over at least part of the size range from d10 to d90 the composite particles have a size-dependent silicon content. Preferably a finer fraction of the composite powder has an average particle size D1 and a silicon content S1 and a coarser fraction of the composite powder has an average particle size D2 and a silicon content S2, whereby a size dependence factor F is defined as follows F=(S2?S1)/(D2?D1), whereby the absolute value of the size dependence factor F is at least 0.04 wt % silicon/?m.
    Type: Application
    Filed: December 21, 2018
    Publication date: March 18, 2021
    Inventors: Nicolas MARX, Stijn PUT, Jean-Sébastien BRIDEL
  • Publication number: 20210036315
    Abstract: Silicon-based powder for use in the negative electrode of a battery, whereby the silicon-based powder comprises silicon-based particles, whereby the silicon-based particles have a number-based particle size distribution having a d50, whereby the particle size of a particle is considered to be the largest dimension of said particle, whereby less than 8.0% of the particles have a size which is larger than twice the d50. Such a silicon based powder may be embedded in a matrix to form an active material powder. Preferably d50<150 nm and d10>10 nm. The cycle efficiency of a negative electrode of a battery, made using such a powder, is much improved.
    Type: Application
    Filed: February 5, 2019
    Publication date: February 4, 2021
    Inventors: Stijn PUT, Nicolas MARX, Jan GILLEIR, Daniël NELIS
  • Patent number: 10847782
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 24, 2020
    Assignee: Umicore
    Inventors: Stijn Put, Dirk Van Genechten, Jan Gilleir, Nicolas Marx
  • Publication number: 20200295359
    Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 17, 2020
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Yasunari OTSUKA, Nobuaki ISHII, Nicolas MARX, Stijn PUT
  • Patent number: 10637052
    Abstract: Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise a carbon matrix material and silicon particles embedded in this matrix material, characterized in that the composite powder further comprises silicon carbide.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: April 28, 2020
    Assignee: Umicore
    Inventors: Stijn Put, Dirk Van Genechten, Nicolas Marx
  • Publication number: 20190386300
    Abstract: An active material powder for use in a negative electrode of a battery, wherein the active material powder comprises active material particles, wherein the active material particles comprise silicon-based particles, wherein when said active material powder is crossed by a plane, then at least 65% of the discrete cross-sections of the silicon-based particles included in that plane, satisfy optimized conditions of shape and size, allowing the battery containing such an active material powder to achieve a superior cycle life and a production method of such an active material powder.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 19, 2019
    Inventors: Nicolas MARX, Stijn PUT, Jean-Sébastien BRIDEL, Boaz MOEREMANS
  • Patent number: 10340516
    Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1?y?3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: July 2, 2019
    Assignee: UMICORE
    Inventors: Stijn Put, Jan Gilleir, Kris Driesen, Jean-Sébastien Bridel, Nicolas Marx, Delphine Longrie, Dan V. Goia, John I. Njagi
  • Patent number: 10109848
    Abstract: The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0<x?2) on a particle surface, have an oxygen content ratio of 1 mass % or more and 18 mass % or less, and mainly comprise particles having a primary particle diameter of 200 nm or less; and the artificial graphite particles have a scale-like shape. By using the negative electrode material, a lithium ion battery having a high capacitance and excellent charge-discharge cycle characteristics can be produced.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: October 23, 2018
    Assignees: SHOWA DENKO K.K., UMICORE
    Inventors: Hirokazu Murata, Masataka Takeuchi, Nobuaki Ishii, Sam Siau, Nicolas Marx, Stijn Put
  • Publication number: 20180083275
    Abstract: Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise a carbon matrix material and silicon particles embedded in this matrix material, characterized in that the composite powder further comprises silicon carbide.
    Type: Application
    Filed: April 26, 2016
    Publication date: March 22, 2018
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Nicolas MARX
  • Publication number: 20180013137
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: October 15, 2015
    Publication date: January 11, 2018
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX, Arihiro MUTO, Nobuaki ISHII, Masataka TAKEUCHI
  • Publication number: 20170346073
    Abstract: Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 ?m or less, or the silicon-based domains are not at all agglomerated into agglomerates.
    Type: Application
    Filed: October 15, 2015
    Publication date: November 30, 2017
    Inventors: Stijn PUT, Dirk VAN GENECHTEN, Jan GILLEIR, Nicolas MARX
  • Publication number: 20170244101
    Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1?y?3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.
    Type: Application
    Filed: March 9, 2017
    Publication date: August 24, 2017
    Inventors: Stijn PUT, Jan GILLEIR, Kris DRIESEN, Jean-Sébastien BRIDEL, Nicolas MARX, Delphine LONGRIE, Dan V. GOIA, John I. NJAGI
  • Publication number: 20160190552
    Abstract: The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0<x?2) on a particle surface, have an oxygen content ratio of 1 mass % or more and 18 mass % or less, and mainly comprise particles having a primary particle diameter of 200 nm or less; and the artificial graphite particles have a scale-like shape. By using the negative electrode material, a lithium ion battery having a high capacitance and excellent charge-discharge cycle characteristics can be produced.
    Type: Application
    Filed: August 4, 2014
    Publication date: June 30, 2016
    Applicants: SHOWA DENKO K.K., UMICORE
    Inventors: Hirokazu MURATA, Masataka TAKEUCHI, Nobuaki ISHII, Sam SIAU, Nicolas MARX, Stijn PUT