Patents by Inventor Nicolay Y. Kovarsky

Nicolay Y. Kovarsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110198229
    Abstract: The present invention generally relates to apparatus and methods for plating conductive materials on a substrate. One embodiment of the present invention provides an apparatus for plating a conductive material on a substrate. The apparatus comprises a fluid basin configured to retain an electrolyte, a contact ring configured to support the substrate and contact the substrate electrically, and an anode assembly disposed in the fluid basin, wherein the anode assembly comprises a plurality of anode elements arranged in rows.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Inventors: SARAVJEET SINGH, Manoocher Birang, Nicolay Y. Kovarsky, Aron Rosenfeld
  • Publication number: 20110136347
    Abstract: The production and delivery of a reaction precursor containing one or more silylamines near a point of use is described. Silylamines may include trisilylamine (TSA) but also disilylamine (DSA) and monosilylamine (MSA). Mixtures involving two or more silylamines can change composition (e.g. proportion of DSA to TSA) over time. Producing silylamines near a point-of-use limits changing composition, reduces handling of unstable gases and reduces cost of silylamine-consuming processes.
    Type: Application
    Filed: October 11, 2010
    Publication date: June 9, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Nicolay Y. Kovarsky, Dmitry Lubomirsky
  • Patent number: 7935240
    Abstract: The present invention generally relates to apparatus and methods for plating conductive materials on a substrate. One embodiment of the present invention provides an apparatus for plating a conductive material on a substrate. The apparatus comprises a fluid basin configured to retain an electrolyte, a contact ring configured to support the substrate and contact the substrate electrically, and an anode assembly disposed in the fluid basin, wherein the anode assembly comprises a plurality of anode elements arranged in rows.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: May 3, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Manoocher Birang, Nicolay Y. Kovarsky, Aron Rosenfeld
  • Publication number: 20110031112
    Abstract: A method and apparatus for measuring differential voltages in an electrolyte of an electrochemical plating cell. Current densities are calculated from the measured differential voltages and correlated to thickness values of plated materials. A real time thickness profile may be generated from the thickness values.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Inventors: MANOOCHER BIRANG, Nicolay Y. Kovarsky, Bernardo Donoso
  • Publication number: 20110031113
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 10, 2011
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Patent number: 7837851
    Abstract: A method and apparatus for measuring differential voltages in an electrolyte of an electrochemical plating cell. Current densities are calculated from the measured differential voltages and correlated to thickness values of plated materials. A real time thickness profile may be generated from the thickness values.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: November 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Manoocher Birang, Nicolay Y. Kovarsky, Bernardo Donoso
  • Patent number: 7736928
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel electroplating apparatus and method to form a metal contact structure having metal lines formed using an electrochemical plating process. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation and formation steps, such as screen printing, lithographic steps and inkjet printing steps, to form a contact structure. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 15, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, John O. Dukovic, David Eaglesham, Nicolay Y. Kovarsky, Robert Bachrach, John Busch, Charles Gay
  • Patent number: 7704352
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 27, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Patent number: 7670465
    Abstract: Embodiments of the invention provide a method for plating copper into features formed on a semiconductor substrate. The method includes positioning the substrate in a plating cell, wherein the plating cell includes a catholyte volume containing a catholyte solution, an anolyte volume containing an anolyte solution, an ionic membrane positioned to separate the anolyte volume from the catholyte volume, and an anode positioned in the anolyte volume. The method further includes applying a plating bias between the anode and the substrate, plating copper ions onto the substrate from the catholyte solution, and replenishing the copper ions plated onto the substrate from the catholyte solution with copper ions transported from the anolyte solution via the ionic membrane, wherein the catholyte solution has a copper concentration of greater than about 51 g/L.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: March 2, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Nicolay Y. Kovarsky
  • Patent number: 7651934
    Abstract: Embodiments of the invention provide methods for forming conductive materials within contact features on a substrate by depositing a seed layer within a feature and subsequently filling the feature with a copper-containing material during an electroless deposition process. In one example, a copper electroless deposition solution contains levelers to form convexed or concaved copper surfaces. In another example, a seed layer is selectively deposited on the bottom surface of the aperture while leaving the sidewalls substantially free of the seed material during a collimated PVD process. In another example, the seed layer is conformably deposited by a PVD process and subsequently, a portion of the seed layer and the underlayer are plasma etched to expose an underlying contact surface. In another example, a ruthenium seed layer is formed on an exposed contact surface by an ALD process utilizing the chemical precursor ruthenium tetroxide.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Timothy W. Weidman, Arulkumar Shanmugasundram, Nicolay Y. Kovarsky, Kapila Wijekoon
  • Publication number: 20080128268
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey Lopatin, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20080132082
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel electroplating apparatus and method to form a metal contact structure having metal lines formed using an electrochemical plating process. The apparatus and methods described herein remove the need to perform the often costly processing steps of performing a mask preparation and formation steps, such as screen printing, lithographic steps and inkjet printing steps, to form a contact structure. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey Lopatin, John O. Dukovic, David Eaglesham, Nicolay Y. Kovarsky, Robert Bachrach, John Busch, Charles Gay
  • Publication number: 20080128019
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell using a novel high speed electroplating method and apparatus to form a metal contact structure having selectively formed metal lines using an electrochemical plating process. The apparatus and methods described herein remove the need to perform one or more high temperature screen printing processes to form conductive features on the surface of a solar cell substrate. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connection that is reliable and cost effective. Therefore, one or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing a common metal, such as copper.
    Type: Application
    Filed: December 1, 2006
    Publication date: June 5, 2008
    Inventors: Sergey LOPATIN, Nicolay Y. Kovarsky, David Eaglesham, John O. Dukovic, Charles Gay
  • Publication number: 20080092947
    Abstract: Embodiments of the invention contemplate the formation of a low cost solar cell metal contact structure that has improved electrical and mechanical properties through the use of an electrochemical plating process. The resistance of interconnects formed in a solar cell device greatly affects the efficiency of the solar cell. It is thus desirable to form a solar cell device that has a low resistance connections that is reliable and cost effective. One or more embodiments of the invention described herein are adapted to form a low cost and reliable interconnecting layer using an electrochemical plating process containing common metal, such as copper. However, generally the electroplated portions of the interconnecting layer may contain a substantially pure metal or a metal alloy layer. Methods are discussed herein that are used to form a solar cell containing conductive metal interconnect layer(s) that have a low intrinsic stress.
    Type: Application
    Filed: October 24, 2006
    Publication date: April 24, 2008
    Inventors: Sergey Lopatin, Charles Gay, David Eaglesham, John O. Dukovic, Nicolay Y. Kovarsky
  • Patent number: 7273535
    Abstract: A method and apparatus for plating a metal onto a substrate. The apparatus includes a fluid basin configured to contain a plating solution, an anode fluid volume positioned in a lower portion of the fluid basin, a cathode fluid volume positioned in an upper portion of the fluid basin, an ionic membrane positioned to separate the anode fluid volume from the cathode fluid volume, a plating electrode centrally positioned in the anode fluid volume, and a deplating electrode positioned adjacent the plating electrode in the anode fluid volume.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: September 25, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Nicolay Y. Kovarsky, Dmitry Lubomirsky, Yevgeniy (Eugene) Rabinovich
  • Patent number: 7128823
    Abstract: Embodiments of the invention provide a method for plating copper into features formed on a semiconductor substrate. The method includes positioning the substrate in a plating cell, wherein the plating cell includes a catholyte volume containing a catholyte solution, an anolyte volume containing an anolyte solution, an ionic membrane positioned to separate the anolyte volume from the catholyte volume, and an anode positioned in the anolyte volume. The method further includes applying a plating bias between the anode and the substrate, plating copper ions onto the substrate from the catholyte solution, and replenishing the copper ions plated onto the substrate from the catholyte solution with copper ions transported from the anolyte solution via the ionic membrane, wherein the catholyte solution has a copper concentration of greater than about 51 g/L.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Nicolay Y. Kovarsky
  • Publication number: 20040154926
    Abstract: Embodiments of the invention generally include a method and intermediate plating solution for plating metal onto a substrate surface. The method generally includes filling the features and/or growing a film layer on the field areas by plating a metal from a first solution on a seed layer under an applied first current, wherein the first solution includes an acid in an amount sufficient to provide a first solution pH of about 6 or less, copper ions, and at least one suppressor. The method may further include substantially filling features by plating metal ions from a second solution onto the substrate under an applied second current to form a metal layer, wherein the second solution includes an acid in an amount sufficient to provide a second solution pH of from about 0.
    Type: Application
    Filed: December 24, 2003
    Publication date: August 12, 2004
    Inventors: Zhi-Wen Sun, Bo Zheng, Nicolay Y. Kovarsky, You Wang, Toshiyuki Nakagawa, Terukazu Aitani, Koji Hara, Daxin Mao, Michael X. Yang
  • Publication number: 20040134775
    Abstract: Embodiments of the invention provide an electrochemical plating cell. The plating cell includes a fluid basin having an anolyte solution compartment and a catholyte solution compartment, an ionic membrane positioned between the anolyte solution compartment and the catholyte solution compartment, and an anode positioned in the anolyte solution compartment, wherein the ionic membrane comprises a poly tetrafluoroethylene based ionomer.
    Type: Application
    Filed: July 24, 2003
    Publication date: July 15, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Michael X. Yang, Dmitry Lubomirsky, Yezdi N. Dordi, Saravjeet Sinh, Sheshraj L. Tulshibagwale, Nicolay Y. Kovarsky
  • Publication number: 20040026255
    Abstract: Embodiments of the invention generally provide a method and apparatus for plating a metal on a substrate. The electrochemical plating system generally includes a plating cell having an anolyte compartment and a catholyte compartment, the anolyte compartment having an insoluble anode and an anolyte therein. The catholyte compartment generally includes a substrate support member and a catholyte therein. In addition, the plating cell generally includes an ion-exchange membrane disposed between the anolyte compartment and the catholyte compartment and a pump in fluid communication with the anolyte compartment, the pump configured to provide an anolyte to the anolyte compartment having a linear velocity of between about 0.5 cm/sec to about 50 cm/sec. The method generally includes supplying an anolyte solution to an anolyte compartment disposed in a plating cell having an anolyte compartment and a catholyte compartment.
    Type: Application
    Filed: February 4, 2003
    Publication date: February 12, 2004
    Applicant: Applied Materials, Inc
    Inventors: Nicolay Y. Kovarsky, Dmitry Lubomirsky, Anzhong Chang, Yezdi N. Dordi, Michael X. Yang
  • Publication number: 20040016647
    Abstract: Embodiments of the invention provide a method for plating copper into features formed on a semiconductor substrate. The method includes positioning the substrate in a plating cell, wherein the plating cell includes a catholyte volume containing a catholyte solution, an anolyte volume containing an anolyte solution, an ionic membrane positioned to separate the anolyte volume from the catholyte volume, and an anode positioned in the anolyte volume. The method further includes applying a plating bias between the anode and the substrate, plating copper ions onto the substrate from the catholyte solution, and replenishing the copper ions plated onto the substrate from the catholyte solution with copper ions transported from the anolyte solution via the ionic membrane, wherein the catholyte solution has a copper concentration of greater than about 51 g/L.
    Type: Application
    Filed: July 8, 2003
    Publication date: January 29, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Michael X. Yang, Nicolay Y. Kovarsky