Patents by Inventor Nikhil Bajaj

Nikhil Bajaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004472
    Abstract: The technology provides a multi-actuator haptic vibration device that has a mounting platform and a pair of linear resonant actuators (LRAs) attached to the mounting platform. Each LRA has an axis of vibration and a moveable mass constrained to move backwards and forwards therealong, with the axes of vibration being arranged in a same direction. A controller is configured to produce haptic feedback as a combined output waveform on the mounting platform, by obtaining an input waveform corresponding to a haptic effect and computing a control component waveform for each LRA via either (i) pre-determined performance-timing tables or (ii) pre-determined performance-timing functions. The controller estimates a position of each moveable mass, controls the position of each moveable mass, and controls each LRAs with its respective computed control component waveform.
    Type: Application
    Filed: January 4, 2023
    Publication date: January 4, 2024
    Applicant: General Vibration Corporation
    Inventors: Nikhil Bajaj, George T.-C. Chiu, John Houston, Rob Morris
  • Patent number: 11782007
    Abstract: The present disclosure relates to a novel composite film configured for CO2 sensing, and the method of making and using the novel composite film. The novel composite film comprises a carbon nanotube film and a CO2 absorbing layer deposited on the carbon nanotube film, wherein the CO2 absorbing layer comprises a mixture of a branched polyethylenimine, a polyethylene glycol, and poly[1-(4-vinylbenzyl)-3-methylimidazolium tetrafluoroborate] of formula I: wherein n ranges from 10-300.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: October 10, 2023
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Bryan W Boudouris, Nikhil Bajaj, Allison Kelly Murray, Zachary A Siefker, Xikang Zhao
  • Patent number: 11579698
    Abstract: Aspects of the technology employ synchronized arrays of low-cost, readily available vibration actuators to emulate and outperform single actuator systems, bringing together sets of actuators to create desired control effects. This approach involves coherent phase switching and modulation of a linear actuator array. A pair of linear resonant actuators (LRAs) may be employed for improved haptic waveform synthesis performance. According to one feature, energy may stored in the mechanical inertia of the LRA via velocity and stiffness of the LRA via displacement and released through modulation of the relative phase of the LRAs. Phase switching and modulation techniques may be used to control more than two LRAs, and in other arrangements than a dual LRA, including, but not limited to architectures that have LRAs arranged in multiple directions in an array spanning, for example, the two dimensions of a plane, or three dimensions of physical space.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: February 14, 2023
    Assignee: GENERAL VIBRATION CORPORATION
    Inventors: Nikhil Bajaj, George T.-C. Chiu, John Houston, Rob Morris
  • Publication number: 20220395861
    Abstract: Aspects of the technology employ components to control and combine the vibration outputs of two vibration motors into essentially a pure vibration force, which can be controlled to output a given frequency and amplitude, produce beat frequencies, and produce brief impulses. For instance, identical attachment elements are affixed to a vibration device but do not contact each other during operation. Such attachment elements are able to cancel undesired torque vibrations to provide a combined pure force vibration output. The attachment elements may be secondary eccentric rotating masses affixed to the shaft of a vibration motor. Along with the vibration motor's primary eccentric rotating mass, these elements can cancel out unwanted parasitic torque vibrations by producing counter-torque vibrations.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 15, 2022
    Applicant: General Vibration Corporation
    Inventors: Michael G. Snow, Nikhil Bajaj, John Houston
  • Publication number: 20220094253
    Abstract: The technology introduces a new type of attachment to the shaft of a vibration motor designed to have the dual properties of eccentricity and an aerodynamic shape. This aerodynamic shape is intended to enhance the performance of the ERM-based device, improve its capabilities, or both. In this disclosure the term “performance” means current draw, noise, or controllability of the aerodynamic vibration attachment. The aerodynamic vibration attachment may have additional properties such as an embedded or otherwise incorporated shape or target that facilitates the estimation or measurement of the aerodynamic vibration attachment's angular position, angular velocity, or both, by a sensor or sensors.
    Type: Application
    Filed: January 22, 2020
    Publication date: March 24, 2022
    Applicant: General Vibration Corporation
    Inventors: John Houston, Nicholas G. Currier, Nikhil Bajaj, Rob Morris
  • Publication number: 20220003760
    Abstract: A method of detecting a substance, wherein the method includes functionalizing a plurality of sensors, wherein the functionalizing the plurality of sensors comprises depositing a first material using a piezoelectrically actuated pipette system, wherein the first material includes a polymer, a receptor, and a solvent, wherein the solvent comprises dimethylformamide. The method further includes evaporating a solution of the first material, wherein a residue after the evaporation comprises a functionalized chemical. Additionally, the method includes introducing a control material to a first set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system. Further, the method includes introducing a test material to a second set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system, wherein the test material comprises an analyte.
    Type: Application
    Filed: February 10, 2021
    Publication date: January 6, 2022
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, Eric A. Nauman, Mackenzie Tweardy, Michael Wadas, Allison Kelly Murray, George Tsu-Chih Chiu, Nikhil Bajaj
  • Publication number: 20210365123
    Abstract: Aspects of the technology employ synchronized arrays of low-cost, readily available vibration actuators to emulate and outperform single actuator systems, bringing together sets of actuators to create desired control effects. This approach involves coherent phase switching and modulation of a linear actuator array. A pair of linear resonant actuators (LRAs) may be employed for improved haptic waveform synthesis performance. According to one feature, energy may stored in the mechanical inertia of the LRA via velocity and stiffness of the LRA via displacement and released through modulation of the relative phase of the LRAs. Phase switching and modulation techniques may be used to control more than two LRAs, and in other arrangements than a dual LRA, including, but not limited to architectures that have LRAs arranged in multiple directions in an array spanning, for example, the two dimensions of a plane, or three dimensions of physical space.
    Type: Application
    Filed: August 10, 2021
    Publication date: November 25, 2021
    Applicant: General Vibration Corporation
    Inventors: Nikhil Bajaj, George T.C. Chiu, John Houston, Rob Morris
  • Patent number: 11132062
    Abstract: Aspects of the technology employ synchronized arrays of low-cost, readily available vibration actuators to emulate and outperform single actuator systems, bringing together sets of actuators to create desired control effects. This approach involves coherent phase switching and modulation of a linear actuator array. A pair of linear resonant actuators (LRAs) may be employed for improved haptic waveform synthesis performance. According to one feature, energy may stored in the mechanical inertia of the LRA via velocity and stiffness of the LRA via displacement and released through modulation of the relative phase of the LRAs. Phase switching and modulation techniques may be used to control more than two LRAs, and in other arrangements than a dual LRA, including, but not limited to architectures that have LRAs arranged in multiple directions in a array spanning, for example, the two dimensions of a plane, or three dimensions of physical space.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: September 28, 2021
    Assignee: GENERAL VIBRATION CORPORATION
    Inventors: Nikhil Bajaj, George T.-C. Chiu, John Houston, Rob Morris
  • Patent number: 11061482
    Abstract: Force sensitive input device and methods are disclosed. A force sensitive input device may include a button, an analog sensor, and circuitry. The button may be movable along a first axis between first and second end positions and biased toward the first end position. The analog sensor may output an analog signal that is a function of a displacement of the button along the first axis from the first end position. The circuitry may generate both analog and digital input data in response to the analog signal. The analog input data may include a range of values that are monotonically related to the displacement of the button, and the digital input data may include first and second binary values.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: July 13, 2021
    Assignee: Aimpad, LLC
    Inventors: Lance William Madsen, Nikhil Bajaj
  • Patent number: 11060998
    Abstract: This present disclosure relates to sensors capable of sensing mass, stiffness, and chemical or biological substances. More specifically, this disclosure provides the design and implementation of a piecewise-linear resonator realized via diode- and integrated circuit-based feedback electronics and a quartz crystal resonator. The proposed system is fabricated and characterized, and the creation and selective placement of the bifurcation points of the overall electromechanical system is demonstrated by tuning the circuit gains. The demonstrated circuit operates around at least 1 MHz.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: July 13, 2021
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj
  • Patent number: 10948489
    Abstract: A method of detecting a substance, wherein the method includes functionalizing a plurality of sensors, wherein the functionalizing the plurality of sensors comprises depositing a first material using a piezoelectrically actuated pipette system, wherein the first material includes a polymer, a receptor, and a solvent, wherein the solvent comprises dimethylformamide. The method further includes evaporating a solution of the first material wherein a residue after the evaporation comprises a functionalized chemical. Additionally, the method includes introducing a control material to a first set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system. Further, the method includes introducing a test material to a second set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system, wherein the test material comprises an analyte.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 16, 2021
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, Eric A. Nauman, Mackenzie Tweardy, Michael Wadas, Allison Kelly Murray, George Tsu-Chih Chiu, Nikhil Bajaj
  • Publication number: 20210041387
    Abstract: The present disclosure relates to a novel composite film configured for CO2 sensing, and the method of making and using the novel composite film. The novel composite film comprises a carbon nanotube film and a CO2 absorbing layer deposited on the carbon nanotube film, wherein the CO2 absorbing layer comprises a mixture of a branched polyethylenimine, a polyethylene glycol, and poly[1-(4-vinylbenzyl)-3-methylimidazolium tetrafluoroborate] of formula I: wherein n ranges from 10-300.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 11, 2021
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Bryan W Boudouris, Nikhil Bajaj, Allison Kelly Murray, Zachary A Siefker, Xikang Zhao
  • Publication number: 20200356173
    Abstract: Aspects of the technology employ synchronized arrays of low-cost, readily available vibration actuators to emulate and outperform single actuator systems, bringing together sets of actuators to create desired control effects. This approach involves coherent phase switching and modulation of a linear actuator array. A pair of linear resonant actuators (LRAs) may be employed for improved haptic waveform synthesis performance. According to one feature, energy may stored in the mechanical inertia of the LRA via velocity and stiffness of the LRA via displacement and released through modulation of the relative phase of the LRAs. Phase switching and modulation techniques may be used to control more than two LRAs, and in other arrangements than a dual LRA, including, but not limited to architectures that have LRAs arranged in multiple directions in a array spanning, for example, the two dimensions of a plane, or three dimensions of physical space.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 12, 2020
    Inventors: Nikhil Bajaj, George T.-C. Chiu, John Houston, Rob Morris
  • Publication number: 20200218362
    Abstract: Force sensitive input device and methods are disclosed. A force sensitive input device may include a button, an analog sensor, and circuitry. The button may be movable along a first axis between first and second end positions and biased toward the first end position. The analog sensor may output an analog signal that is a function of a displacement of the button along the first axis from the first end position. The circuitry may generate both analog and digital input data in response to the analog signal. The analog input data may include a range of values that are monotonically related to the displacement of the button, and the digital input data may include first and second binary values.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Lance William Madsen, Nikhil Bajaj
  • Publication number: 20200064310
    Abstract: This present disclosure relates to sensors capable of sensing mass, stiffness, and chemical or biological substances. More specifically, this disclosure provides the design and implementation of a piecewise-linear resonator realized via diode- and integrated circuit-based feedback electronics and a quartz crystal resonator. The proposed system is fabricated and characterized, and the creation and selective placement of the bifurcation points of the overall electromechanical system is demonstrated by tuning the circuit gains. The demonstrated circuit operates around at least 1 MHz.
    Type: Application
    Filed: December 4, 2018
    Publication date: February 27, 2020
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj
  • Publication number: 20190025296
    Abstract: A method of detecting a substance, wherein the method includes functionalizing a plurality of sensors, wherein the functionalizing the plurality of sensors comprises depositing a first material using a piezoelectrically actuated pipette system, wherein the first material includes a polymer, a receptor, and a solvent, wherein the solvent comprises dimethylformamide. The method further includes evaporating a solution of the first material wherein a residue after the evaporation comprises a functionalized chemical. Additionally, the method includes introducing a control material to a first set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system. Further, the method includes introducing a test material to a second set of sensors of the plurality of sensors using the piezoelectrically actuated pipette system, wherein the test material comprises an analyte.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 24, 2019
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, Eric A. Nauman, Mackenzie Tweardy, Michael Wadas, Allison Kelly Murray, George Tsu-Chih Chiu, Nikhil Bajaj
  • Patent number: 10072969
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 11, 2018
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Publication number: 20180180466
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 28, 2018
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Patent number: 9927287
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: March 27, 2018
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Publication number: 20160290855
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Application
    Filed: December 17, 2015
    Publication date: October 6, 2016
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater