Patents by Inventor Nikolai Poulsen

Nikolai Poulsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210259733
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 26, 2021
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 11049418
    Abstract: An anatomical model for surgical training is provided. The model includes a first layer simulating a liver and a second layer including a simulated gallbladder. A third layer having an inner surface and an outer surface is provided between the first and second layer. The outer surface of the third layer is adhered to the first layer at location around the simulated gallbladder and the simulated gallbladder is adhered to the inner surface of the third layer. A fourth layer is provided that overlays both the second layer and the simulated gallbladder. A frame is embedded within the first layer and is connectable to a support. The model provides a substantially upright projection of a simulated gallbladder and liver in a retracted orientation ideally suited for practicing laparoscopic cholecystectomy when inserted inside a simulated insufflated cavity of laparoscopic trainer.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: June 29, 2021
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Tracy Breslin, Nikolai Poulsen, Charles C. Hart
  • Publication number: 20210177458
    Abstract: Embodiments of a surgical access port system that comprises a retractor that is adapted for being coupled to a cap and that is particularly useful in natural orifice surgery are described. The retractor comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient and substantially surround the orifice; a tubular body; and various stabilizing mechanisms surrounding the tubular body, sized and configured to stabilize and retain the retractor within the orifice. The stabilizing embodiments described herein are useful in all natural orifices and are of particular use in the vaginal surgery.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Serene Wachli, Tracy Breslin, Alexander Sheehan, Nikolai Poulsen
  • Patent number: 11008034
    Abstract: An assembly of a first and second child transport apparatus is disclosed. Each apparatus may include: a frame having a frame base, at least one wheel, and a handle; at least one brake and a brake rod, wherein the brake rod is attached to the frame, and wherein the at least one brake actionable upon the wheel when the brake rod is actuated; a carriage pivotably attached to the frame; and a foldable backrest pivotably attached to a base of the carriage, wherein, in a nested position, the foldable backrest of the first apparatus is folded down and the carriage of the second apparatus is positioned partially within the carriage of the first apparatus such that the carriage of the second apparatus is disposed partially over the foldable backrest of the first apparatus; and the brake rod of the first apparatus is released by the handle of the second apparatus.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: May 18, 2021
    Assignee: Innovation Lab, LLC
    Inventors: Melissa Lewis Anderson, Sharon Doescher Wesberry, Matthew Ibarra, Nikolai Poulsen, Nicole Marie Weikert
  • Patent number: 10987132
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 27, 2021
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Publication number: 20210085364
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 25, 2021
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew A. Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 10952768
    Abstract: Embodiments of a surgical access port system that comprises a retractor that is adapted for being coupled to a cap and that is particularly useful in natural orifice surgery are described. The retractor comprises an outer ring, wherein the outer ring is configured to be disposed proximate the natural orifice of the patient and substantially surround the orifice; a tubular body; and various stabilizing mechanisms surrounding the tubular body, sized and configured to stabilize and retain the retractor within the orifice. The stabilizing embodiments described herein are useful in all natural orifices and are of particular use in the vaginal surgery.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: March 23, 2021
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Tracy Breslin, Alexander Sheehan, Nikolai Poulsen
  • Publication number: 20210043115
    Abstract: Simulated tissue structures for practicing surgical techniques and methods of manufacturing those structures are provided. In particular, a realistic organ model or simulated tissue portion for practicing the removal of a tumor or other undesired tissue followed by suturing a remnant defect as part of the same surgical procedure is provided. The simulated tissue structures include a polyp simulation having a suturable mesh layer that is separable from a defect layer. A simulated colon model with interchangeable and suturable tissue pods is also provided as is a fully suturable rectum model and a rectum model with integrative suturable and removable polyp zones.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Nikolai Poulsen, Khodr Saleh
  • Patent number: 10842530
    Abstract: Systems and methods for preventing the seeding of cancerous cells during morcellation of a tissue specimen inside a patient's body and removal of the tissue specimen from inside the patient through a minimally-invasive body opening to outside the patient are provided. One system includes a cut-resistant tissue guard removably insertable into a containment bag. The tissue specimen is isolated and contained within the containment bag and the guard is configured to protect the containment bag and surrounding tissue from incidental contact with sharp instrumentation used during morcellation and extraction of the tissue specimen. The guard is adjustable for easy insertion and removal and configured to securely anchor to the body opening. Protection-focused and containment-based systems for tissue removal are provided that enable minimally invasive procedures to be performed safely and efficiently.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: November 24, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Serene Wachli, Tracy Breslin, Steven C. Kessler, Nikolai Poulsen, Nathan Collins, Alexandra Do, Eduardo Bolanos, Boun Pravong, Patrick Elliott, Matthew A. Wixey, Wayne Young, Jacob J. Filek, Kevin B. Castelo, Adam Hoke, Gregory K. Hofstetter, Jacqueline DeMarchi, Amy Garces, Heidi Holmes, Alexander Sheehan
  • Patent number: 10818201
    Abstract: Simulated tissue structures for practicing surgical techniques and methods of manufacturing those structures are provided. In particular, a realistic organ model or simulated tissue portion for practicing the removal of a tumor or other undesired tissue followed by suturing a remnant defect as part of the same surgical procedure is provided. The simulated tissue structures include a polyp simulation having a suturable mesh layer that is separable from a defect layer. A simulated colon model with interchangeable and suturable tissue pods is also provided as is a fully suturable rectum model and a rectum model with integrative suturable and removable polyp zones.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: October 27, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Gregory K. Hofstetter, Tracy Breslin, Nikolai Poulsen, Khodr Saleh
  • Publication number: 20200279508
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Publication number: 20200163734
    Abstract: The present disclosure relates to a medical instrument holding container. The medical instrument holding container may comprise: a perimeter wall with at least one transparent portion; a holding shelf disposed within the perimeter wall, the holding shelf moveable between a resting position and an activated position; and a control mechanism coupled to the holding shelf and capable of being activated so as to move the holding shelf between the resting position and the activated position.
    Type: Application
    Filed: July 18, 2018
    Publication date: May 28, 2020
    Inventors: Jean Snyder, Nicole Marie Weikert, Nikolai Poulsen, Matthew Ibarra
  • Patent number: 10657845
    Abstract: A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Katie Black, Nikolai Poulsen, Heidi Holmes, Natasha Felsinger, Tracy Breslin, Kennii Pravongviengkham, Boun Pravong, Eduardo Bolanos, Zoran Falkenstein, Charles C. Hart, Tina Talwar
  • Publication number: 20200152086
    Abstract: A surgical training model that includes a simulated tissue having a tubular shape that is connected to a tissue holder is provided. A portion of the simulated tissue overhangs the distal end of the tissue holder to simulate a cuff-like entry to the vaginal vault or resected intestine suitable for practicing laparoscopic closure of the vaginal vault, intestine or other organ via suturing or stapling. Two concentric tubular structures are also arranged over the same tissue holder. A second model includes two portions of simulated tissue that are held by two holders such that the simulated tissues are adjacent making the model suitable for practicing different types of anastomosis procedures. A third model includes two holders with a single or double tubular simulated tissue structure connected to and spanning a gap between the holders. The model isolates the step of closing a cylindrical opening for the purpose of repeated practice.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Tracy Breslin, Charles C. Hart, Serene Wachli, Adam Hoke, Nikolai Poulsen, Michael Palermo, Lee Cohen, Jacqueline DeMarchi, Amy Garces
  • Publication number: 20200061312
    Abstract: Pressure conditioning systems for supplying insufflation gas to an open-ended body conduit such as a rectal cavity during a transanal minimally invasive surgery (TAMIS) procedure can reduce billowing of walls of the body conduit. A pressure conditioning system can include a pressure storage component, an accumulator, and a flow restrictor. The pressure storage component can include a variable volume reservoir that is biased to a relatively low volume state. The flow restrictor can include insufflation tubing with a restrictor plate having a relatively low diameter orifice. The pressure storage component, accumulator, and flow restrictor can be fluidly connected in various orders in series or as side branches from a gas flow conduit. Despite a pulsed or otherwise discontinuous insufflation gas flow and leakage and absorption from the body conduit, the pressure conditioning system can maintain a constant pressure within the body conduit.
    Type: Application
    Filed: November 1, 2019
    Publication date: February 27, 2020
    Inventors: Ralph Sias, Alexandra Do, Nikolai Poulsen, Boun Pravong, Kennii Pravongviengkham, Timothy McMorrow, W.F. Anthony Miles
  • Patent number: 10535281
    Abstract: A surgical training model that includes a simulated tissue having a tubular shape that is connected to a tissue holder is provided. A portion of the simulated tissue overhangs the distal end of the tissue holder to simulate a cuff-like entry to the vaginal vault or resected intestine suitable for practicing laparoscopic closure of the vaginal vault, intestine or other organ via suturing or stapling. Two concentric tubular structures are also arranged over the same tissue holder. A second model includes two portions of simulated tissue that are held by two holders such that the simulated tissues are adjacent making the model suitable for practicing different types of anastomosis procedures. A third model includes two holders with a single or double tubular simulated tissue structure connected to and spanning a gap between the holders. The model isolates the step of closing a cylindrical opening for the purpose of repeated practice.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: January 14, 2020
    Assignee: Applied Medical Resources Corporation
    Inventors: Tracy Breslin, Charles C. Hart, Serene Wachli, Adam Hoke, Nikolai Poulsen, Michael Palermo, Lee Cohen, Jacqueline DeMarchi, Amy Garces
  • Patent number: 10493219
    Abstract: Pressure conditioning systems for supplying insufflation gas to an open-ended body conduit such as a rectal cavity during a transanal minimally invasive surgery (TAMIS) procedure can reduce billowing of walls of the body conduit. A pressure conditioning system can include a pressure storage component, an accumulator, and a flow restrictor. The pressure storage component can include a variable volume reservoir that is biased to a relatively low volume state. The flow restrictor can include insufflation tubing with a restrictor plate having a relatively low diameter orifice. The pressure storage component, accumulator, and flow restrictor can be fluidly connected in various orders in series or as side branches from a gas flow conduit. Despite a pulsed or otherwise discontinuous insufflation gas flow and leakage and absorption from the body conduit, the pressure conditioning system can maintain a constant pressure within the body conduit.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 3, 2019
    Assignee: Applied Medical Resources Corporation
    Inventors: Ralph Sias, Alexandra Do, Nikolai Poulsen, Boun Pravong, Kennii Pravongviengkham, Timothy McMorrow, W.F. Anthony Miles
  • Publication number: 20190336718
    Abstract: One aspect of the disclosure includes a respiratory valve apparatus. The respiratory valve apparatus may include: a housing having an inner chamber, an endotracheal tube connection port, a ventilator connection port, and a resuscitation bag connection port; and a piston assembly positioned within the inner chamber and including a piston having a first passageway and a second passageway through the piston, wherein the first passageway provides a first flow pathway between the endotracheal tube connection port and the ventilator or connection port when the piston is in a first position, and wherein the second passageway provides a second flow pathway between the endotracheal tube connection port and the resuscitation bag connection port when in a second position.
    Type: Application
    Filed: December 6, 2017
    Publication date: November 7, 2019
    Inventors: Nicole Marie Weikert, Harry Bayron, Neil Winthrop, Nikolai Poulsen
  • Patent number: 10395559
    Abstract: A model for practicing laparoscopic surgical skills is provided. The model comprises a body having an elongate lumen and a plurality of eyelets connected to an inner surface of the lumen. The plurality of eyelets defines at least one pathway for practicing the passing of at least one needle and suture through the eyelets. The model further includes a staging area with removable objects having apertures configured to be placed onto hook-like eyelets. The model provides a platform for practicing hand-to-hand transfer, depth perception among other skills required in laparoscopic procedures within a confined tubular space. The model may be placed inside a laparoscopic trainer in which the practice is performed in a simulated laparoscopic environment and observed on a video display.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: August 27, 2019
    Assignee: Applied Medical Resources Corporation
    Inventors: Nikolai Poulsen, Tracy Breslin, Jacqueline DeMarchi
  • Publication number: 20190246793
    Abstract: One aspect of the disclosure relates to a pedal organizer. The pedal organizer may include: a first pedal retaining member including a front surface, a rear surface opposite the front surface, a top surface, and a bottom surface opposite the top surface; at least one aperture extending through the top surface to a depth within the first pedal retaining member, the at least one aperture extending from the front surface to the rear surface; and at least one void within the front surface of the first pedal retaining member, the at least one void being open to the at least one aperture without extending through to the rear surface, wherein portions of the front surface on opposing sides of the at least one void are substantially coplanar.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 15, 2019
    Inventors: Nicole Marie Weikert, Matthew Ibarra, Nikolai Poulsen, Moises Alberto Arriaga