Patents by Inventor Nilesh Kapadia

Nilesh Kapadia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9030008
    Abstract: A process for increasing the adhesion of a polymeric material to a metal surface, the process comprising contacting the metal surface with an adhesion promoting composition comprising: 1) an oxidizer; 2) an inorganic acid; 3) a corrosion inhibitor; and 4) an organic phosphonate; and thereafter b) bonding the polymeric material to the metal surface. The organic phosphonate aids in stabilizing the oxidizer and organic components present in the bath and prevents decomposition of the components, thereby increasing the working life of the bath, especially when used with copper alloys having a high iron content.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 12, 2015
    Inventor: Nilesh Kapadia
  • Publication number: 20130312635
    Abstract: A process for increasing the adhesion of a polymeric material to a metal surface, the process comprising contacting the metal surface with an adhesion promoting composition comprising: 1) an oxidizer; 2) an inorganic acid; 3) a corrosion inhibitor; and 4) an organic phosphonate; and thereafter b) bonding the polymeric material to the metal surface. The organic phosphonate aids in stabilizing the oxidizer and organic components present in the bath and prevents decomposition of the components, thereby increasing the working life of the bath, especially when used with copper alloys having a high iron content.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: MacDermind Acumen, Inc.
    Inventor: Nilesh Kapadia
  • Patent number: 8524540
    Abstract: A process for increasing the adhesion of a polymeric material to a metal surface, the process comprising contacting the metal surface with an adhesion promoting composition comprising: 1) an oxidizer; 2) an inorganic acid; 3) a corrosion inhibitor; and 4) an organic phosphonate; and thereafter b) bonding the polymeric material to the metal surface. The organic phosphonate aids in stabilizing the oxidizer and organic components present in the bath and prevents decomposition of the components, thereby increasing the working life of the bath, especially when used with copper alloys having a high iron content.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 3, 2013
    Inventor: Nilesh Kapadia
  • Patent number: 8486281
    Abstract: A nickel-chromium alloy etching composition comprising sulfuric acid, a source of chloride ions, including hydrochloric acid or sodium, potassium or ammonium chloride, and a sulfur compound comprising a sulfur atom with an oxidation state between ?2 to +5, such as thiosulfate, sulfide, sulfite, bisulfite, metabisulfite and phosphorus pentasulfide that can efficiently remove nickel-chromium alloy in the presence of copper circuits is disclosed.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: July 16, 2013
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven A. Castaldi, John Ganjei
  • Patent number: 8263177
    Abstract: A process is described for treating metal surfaces printed wiring boards and similar substrates to provide improved creep corrosion resistance on such surfaces. A modified organic solderability preservative composition is used in combination with an emulsion polymer to provide a modified polymer coating on the metal surface finish via a chemical reaction to provide enhanced corrosion protection of the surface.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: September 11, 2012
    Inventors: Kesheng Feng, Nilesh Kapadia, Witold Paw
  • Publication number: 20120193773
    Abstract: A process for increasing the adhesion of a polymeric material to a metal surface, the process comprising contacting the metal surface with an adhesion promoting composition comprising: 1) an oxidizer; 2) an inorganic acid; 3) a corrosion inhibitor; and 4) an organic phosphonate; and thereafter b) bonding the polymeric material to the metal surface. The organic phosphonate aids in stabilizing the oxidizer and organic components present in the bath and prevents decomposition of the components, thereby increasing the working life of the bath, especially when used with copper alloys having a high iron content.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Inventor: Nilesh Kapadia
  • Publication number: 20110079578
    Abstract: A nickel-chromium alloy etching composition comprising sulfuric acid, a source of chloride ions, including hydrochloric acid or sodium, potassium or ammonium chloride, and a sulfur compound comprising a sulfur atom with an oxidation state between ?2 to +5, such as thiosulfate, sulfide, sulfite, bisulfite, metabisulfite and phosphorus pentasulfide that can efficiently remove nickel-chromium alloy in the presence of copper circuits is disclosed.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 7, 2011
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven A. Castaldi, John Ganjei
  • Patent number: 7875558
    Abstract: The present invention is directed to a microetching composition comprising a source of cupric ions, acid, a nitrile compound, and a source of halide ions. Other additive, including organic solvents, a source of molybdenum ions, amines, polyamines, and acrylamides may also be included in the composition of the invention. The present invention is also directed to a method of microetching copper or copper alloy surfaces to increase the adhesion of the copper surface to a polymeric material, comprising the steps of contacting a copper or copper alloy surface with the composition of the invention, and thereafter bonding the polymeric material to the copper or copper alloy surface.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: January 25, 2011
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven A. Castaldi
  • Publication number: 20100243301
    Abstract: A process is described for treating metal surfaces printed wiring boards and similar substrates to provide improved creep corrosion resistance on such surfaces. A modified organic solderability preservative composition is used in combination with an emulsion polymer to provide a modified polymer coating on the metal surface finish via a chemical reaction to provide enhanced corrosion protection of the surface.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: KESHENG FENG, NILESH KAPADIA, WITOLD PAW
  • Patent number: 7456114
    Abstract: The present invention is directed to a microetching composition comprising a source of cupric ions, acid, a nitrile compound, and a source of halide ions. Other additive, including organic solvents, a source of molybdenum ions, amines, polyamines, and acrylamides may also be included in the composition of the invention. The present invention is also directed to a method of microetching copper or copper alloy surfaces to increase the adhesion of the copper surface to a polymeric material, comprising the steps of contacting a copper or copper alloy surface with the composition of the invention, and thereafter bonding the polymeric material to the copper or copper alloy surface.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 25, 2008
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven A. Castaldi
  • Patent number: 7393461
    Abstract: The present invention related to an improved microetching solution and a method of using the improved composition for roughening a metal surface and increasing the adhesion strength of a metal layer to a subsequently applied layer. The microetching composition is an aqueous solution comprising cupric ion source, a pyridine derivative, multiethyleneamine, and an acid. In a preferred embodiment, the microetching solution of the invention also comprises a source of halide ions such as sodium chloride or hydrochloric acid.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: July 1, 2008
    Inventors: Kesheng Feng, Nilesh Kapadia, Steve Castaldi
  • Publication number: 20080041824
    Abstract: The present invention is directed to a microetching composition comprising a source of cupric ions, acid, a nitrile compound, and a source of halide ions. Other additive, including organic solvents, a source of molybdenum ions, amines, polyamines, and acrylamides may also be included in the composition of the invention. The present invention is also directed to a method of microetching copper or copper alloy surfaces to increase the adhesion of the copper surface to a polymeric material, comprising the steps of contacting a copper or copper alloy surface with the composition of the invention, and thereafter bonding the polymeric material to the copper or copper alloy surface.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 21, 2008
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven Castaldi
  • Publication number: 20070138142
    Abstract: The present invention is directed to a microetching composition comprising a source of cupric ions, acid, a nitrile compound, and a source of halide ions. Other additive, including organic solvents, a source of molybdenum ions, amines, polyamines, and acrylamides may also be included in the composition of the invention. The present invention is also directed to a method of microetching copper or copper alloy surfaces to increase the adhesion of the copper surface to a polymeric material, comprising the steps of contacting a copper or copper alloy surface with the composition of the invention, and thereafter bonding the polymeric material to the copper or copper alloy surface.
    Type: Application
    Filed: December 21, 2005
    Publication date: June 21, 2007
    Inventors: Kesheng Feng, Nilesh Kapadia, Steven Castaldi
  • Publication number: 20070051693
    Abstract: The present invention related to an improved microetching solution and a method of using the improved composition for roughening a metal surface and increasing the adhesion strength of a metal layer to a subsequently applied layer. The microetching composition is an aqueous solution comprising cupric ion source, a pyridine derivative, multiethyleneamine, and an acid. In a preferred embodiment, the microetching solution of the invention also comprises a source of halide ions such as sodium chloride or hydrochloric acid.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 8, 2007
    Inventors: Kesheng Feng, Nilesh Kapadia, Steve Castaldi