Patents by Inventor Nina Kraus

Nina Kraus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969256
    Abstract: The present disclosure provides methods for identifying non-penetrating brain injury in a subject, as well as methods for classifying a subject that received a hit to the body that transmitted an impulsive force to the brain as either having a non-penetrating brain injury or not, by analyzing one or more components of frequency-following response (FFR) following administration of an acoustic stimulus to the subject. In addition, the present disclosure provides methods for assessing a subject's recovery from a non-penetrating brain injury. Also disclosed herein are processes and systems for automatically generating acoustic stimuli and processing brain response data to identify non-penetrating brain injuries in subjects.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: April 30, 2024
    Assignee: Northwestern University
    Inventors: Nina Kraus, Jennifer Lynn Krizman, Trent George Nicol, Travis White-Schwoch
  • Patent number: 11759140
    Abstract: The present disclosure relates to methods for evaluating the sound quality of a digital engineering process by, in part, measuring the frequency following response (FFR) of the human auditory system elicited by identical auditory stimuli (e.g., a musical interval) encoded with variations of a digital signal processing technique (e.g., various sampling rates). Once measured, the FFR may be analyzed to determine the comparative effect of each digital signal processing technique on a human subject's ability to process complex stimuli presented by the digital engineering process.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: September 19, 2023
    Assignee: Northwestern University
    Inventors: Nina Kraus, Trent George Nicol, Jennifer Lynn Krizman, Travis White-Schwoch
  • Publication number: 20220369997
    Abstract: Central nervous (“CNS”) health in subjects who have human immunodeficiency virus (“HIV”) or non-human-species analogs thereof is 102 evaluated or otherwise monitored by analyzing frequency following response (“FFR”). In general, one or more components of an FFR are analyzed, The FFR is measured in response to the administration of an acoustic stimulus to the subject. The acoustic stimulus includes a complex sound, which may include a consonant and a consonant-to-vowel transition. An indication of CNS health can be generated by measuring changes in the FFR components (e.g., over time or relative to normative data).
    Type: Application
    Filed: June 8, 2020
    Publication date: November 24, 2022
    Inventors: Nina Kraus, Jay C. Buckey, Abigail M. Fellows, Jennifer L. Krizman, Trent G. Nicol, Catherine C. Rieke, Travis White-Schwoch
  • Publication number: 20210121119
    Abstract: The present disclosure provides methods for identifying non-penetrating brain injury in a subject, as well as methods for classifying a subject that received a hit to the body that transmitted an impulsive force to the brain as either having a non-penetrating brain injury or not, by analyzing one or more components of frequency-following response (FFR) following administration of an acoustic stimulus to the subject. In addition, the present disclosure provides methods for assessing a subject's recovery from a non-penetrating brain injury. Also disclosed herein are processes and systems for automatically generating acoustic stimuli and processing brain response data to identify non-penetrating brain injuries in subjects.
    Type: Application
    Filed: August 24, 2018
    Publication date: April 29, 2021
    Inventors: Nina Kraus, Jennifer Lynn Krizman, Trent George Nicol, Travis White-Schwoch
  • Publication number: 20200305755
    Abstract: The present disclosure relates to methods for evaluating the sound quality of a digital engineering process by, in part, measuring the frequency following response (FFR) of the human auditory system elicited by identical auditory stimuli (e.g., a musical interval) encoded with variations of a digital signal processing technique (e.g., various sampling rates). Once measured, the FFR may be analyzed to determine the comparative effect of each digital signal processing technique on a human subject's ability to process complex stimuli presented by the digital engineering process.
    Type: Application
    Filed: September 26, 2018
    Publication date: October 1, 2020
    Inventors: Nina Kraus, Trent George Nicol, Jennifer Lynn Krizman, Travis White-Schwoch
  • Patent number: 10607737
    Abstract: Disclosed systems and methods analyze a complex auditory response to generate a particular model for a behavioral outcome. An example method includes analyzing one or more response to a complex stimulus to identify regions in each response and peaks in each region. The example method includes constructing a behavioral outcome model based on region and peak information by evaluating a plurality of parameters based on the information associated with the regions and peaks and applying a best fit analysis to include and/or exclude parameters from the plurality of parameters to determine parameters and relationship between the parameters to form the model. The example method includes facilitating application of the model to generate a score by obtaining values for the parameters forming the model and combining the values according to the relationship between the parameters specified in the model, the score indicative of the behavior outcome with respect to at least one first subject.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: March 31, 2020
    Assignee: Northwestern University
    Inventors: Nina Kraus, Trent Nicol, Travis White-Schwoch
  • Patent number: 10588536
    Abstract: The present disclosure provides methods for identifying non-penetrating brain injury in a subject, as well as methods for classifying a subject that received a hit to the body that transmitted an impulsive force to the brain as either having a non-penetrating brain injury or not, by analyzing one or more components of frequency-following response (FFR) following administration of an acoustic stimulus to the subject. In addition, the present disclosure provides methods for assessing a subject's recovery from a non-penetrating brain injury. Also disclosed herein are processes and systems for automatically generating acoustic stimuli and processing brain response data to identify non-penetrating brain injuries in subjects.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 17, 2020
    Assignee: Northwestern University
    Inventors: Nina Kraus, Trent George Nicol, Jennifer Lynn Krizman, Travis Aaron White-Schwoch
  • Publication number: 20170332935
    Abstract: The present disclosure provides methods for identifying non-penetrating brain injury in a subject, as well as methods for classifying a subject that received a hit to the body that transmitted an impulsive force to the brain as either having a non-penetrating brain injury or not, by analyzing one or more components of frequency-following response (FFR) following administration of an acoustic stimulus to the subject. In addition, the present disclosure provides methods for assessing a subject's recovery from a non-penetrating brain injury. Also disclosed herein are processes and systems for automatically generating acoustic stimuli and processing brain response data to identify non-penetrating brain injuries in subjects.
    Type: Application
    Filed: February 3, 2017
    Publication date: November 23, 2017
    Inventors: NIna Kraus, Trent George Nicol, Jennifer Lynn Krizman, Travis Aaron White-Schwoch
  • Publication number: 20160217267
    Abstract: Disclosed systems and methods analyze a complex auditory response to generate a particular model for a behavioral outcome. An example method includes analyzing one or more response to a complex stimulus to identify regions in each response and peaks in each region. The example method includes constructing a behavioral outcome model based on region and peak information by evaluating a plurality of parameters based on the information associated with the regions and peaks and applying a best fit analysis to include and/or exclude parameters from the plurality of parameters to determine parameters and relationship between the parameters to form the model. The example method includes facilitating application of the model to generate a score by obtaining values for the parameters forming the model and combining the values according to the relationship between the parameters specified in the model, the score indicative of the behavior outcome with respect to at least one first subject.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 28, 2016
    Inventors: Nina Kraus, Trent Nicol, Travis White-Schwoch
  • Publication number: 20150005660
    Abstract: Certain examples provide a method of collecting and analyzing complex auditory brainstem response. The example method includes presenting at least one complex auditory stimulus to a subject and acquiring the subject's complex auditory brainstem response. The example method includes averaging complex auditory brainstem responses from the subject in at least one of a time domain and a frequency domain to form a collected response. The example method includes analyzing the collected response using a signal processor to process the collected response to provide a processed output and to adapt the response for comparison to the at least one complex auditory stimulus. The example method includes performing statistical computations on the processed output to generate visual and data feedback for a user.
    Type: Application
    Filed: July 28, 2014
    Publication date: January 1, 2015
    Inventors: Nina Kraus, Trent G. Nicol, Erika E. Skoe
  • Patent number: 8825149
    Abstract: Certain examples provide a method of collecting and analyzing complex auditory brainstem response. The example method includes presenting at least one complex auditory stimulus to a subject and acquiring the subject's complex auditory brainstem response. The example method includes averaging complex auditory brainstem responses from the subject in at least one of a time domain and a frequency domain to form a collected response. The example method includes analyzing the collected response using a signal processor to process the collected response to provide a processed output and to adapt the response for comparison to the at least one complex auditory stimulus. The example method includes performing statistical computations on the processed output to generate visual and data feedback for a user.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: September 2, 2014
    Assignee: Northwestern University
    Inventors: Nina Kraus, Trent G. Nicol, Erika E. Skoe
  • Patent number: 8712514
    Abstract: A system and method of central auditory processing testing and evaluation provides for identifying clinically relevant neural synchrony in the auditory brainstem pathway. The system or method finds use as a tool to evaluate auditory processing disorders, and hence, potential auditory system and/or learning disabilities. The system or method may further find use in the selection and fitting of hearing corrective appliances such as hearing aid or cochlear implant devices and/or in the selection and implementation of auditory training regimens.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 29, 2014
    Assignee: Northwestern University
    Inventors: Trent Nicol, Nina Kraus
  • Publication number: 20120197153
    Abstract: Certain examples provide a method of collecting and analyzing complex auditory brainstem response. The example method includes presenting at least one complex auditory stimulus to a subject and acquiring the subject's complex auditory brainstem response. The example method includes averaging complex auditory brainstem responses from the subject in at least one of a time domain and a frequency domain to form a collected response. The example method includes analyzing the collected response using a signal processor to process the collected response to provide a processed output and to adapt the response for comparison to the at least one complex auditory stimulus. The example method includes performing statistical computations on the processed output to generate visual and data feedback for a user.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 2, 2012
    Inventors: Nina Kraus, Trent G. Nicol, Erika E. Skoe
  • Publication number: 20110313309
    Abstract: A system and method of central auditory processing testing and evaluation provides for identifying clinically relevant neural synchrony in the auditory brainstem pathway. The system or method finds use as a tool to evaluate auditory processing disorders, and hence, potential auditory system and/or learning disabilities. The system or method may further find use in the selection and fitting of hearing corrective appliances such as hearing aid or cochlear implant devices and/or in the selection and implementation of auditory training regimens.
    Type: Application
    Filed: August 25, 2011
    Publication date: December 22, 2011
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Trent Nicol, Nina Kraus
  • Patent number: 8014853
    Abstract: A system and method of central auditory processing testing and evaluation provides for identifying clinically relevant neural synchrony in the auditory brainstem pathway. The system or method finds use as a tool to evaluate auditory processing disorders, and hence, potential auditory system and/or learning disabilities. The system or method may further find use in the selection and fitting of hearing corrective appliances such as hearing aid or cochlear implant devices and/or in the selection and implementation of auditory training regimens.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: September 6, 2011
    Assignee: Northwestern University
    Inventors: Nina Kraus, Trent Nicol
  • Publication number: 20060282004
    Abstract: A system and method of central auditory processing testing and evaluation provides for identifying clinically relevant neural synchrony in the auditory brainstem pathway. The system or method finds use as a tool to evaluate auditory processing disorders, and hence, potential auditory system and/or learning disabilities. The system or method may further find use in the selection and fitting of hearing corrective appliances such as hearing aid or cochlear implant devices and/or in the selection and implementation of auditory training regimens.
    Type: Application
    Filed: May 11, 2006
    Publication date: December 14, 2006
    Applicant: BIO-LOGIC SYSTEM CORP.
    Inventors: Nina Kraus, Trent Nicol