Patents by Inventor Ning Bian

Ning Bian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112283
    Abstract: The present disclosure provides an ecological governance method based on erosion prevention and control for a gentle slope farmland and relates to the technical field of ecological governance of farmlands. The ecological governance method based on erosion prevention and control for a gentle slope farmland includes the following steps: sampling a gentle slope farmland to investigate erosion thereof; and determining erosion of a gentle slope cultivated land and selecting a corresponding recovery strategy based on a detection result of a sample, a soil quality index (SQI), and a comprehensive vegetation quality index (VQI), where the recovery strategy includes a natural recovery method and a biological-farming comprehensive recovery method; enclosing the gentle slope cultivated land, fallowing the gentle slope cultivated land and reducing tillage; exterminating insect pests and poisonous weeds in the enclosed area; and turning over straws under soil by a cultivator. The growth of poisonous weeds is inhibited.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 4, 2024
    Inventors: Weiping Yan, Shaofeng Bian, Yongjun Wang, Hongxiang Zhao, Lihua Zhang, Baoyu Chen, Hongjun Wang, Tiehua Cao, Xuanhe Liang, Guobo Tan, Ning Sun, Chen Xu, Fei Li, Xiangmeng Meng, Jinghua Wang, Qingge Wang
  • Patent number: 9691282
    Abstract: A method for a driver assistance system for a vehicle is specified, wherein objects in the surroundings of a vehicle are detected on the basis of data of a system that covers the surroundings, and a potential free zone in which only no objects and/or objects which the vehicle can drive over have been reliably detected is determined. The potential free zone is verified by further vehicle and/or surroundings information.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 27, 2017
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Andreas Hartmann, Ning Bian, Kai Bretzigheimer, Thorsten Staab, Daniel Förster
  • Patent number: 9014921
    Abstract: A method in which the driving behavior of a vehicle is influenced as a function of data on the surroundings in order to assist an avoidance maneuver, as soon as a risk of a collision is detected on the basis of the data from one or more environment sensors, in particular radar sensors and/or cameras, and the data from one or more vehicle sensors, in particular a steering angle sensor and/or yaw rate sensor and/or wheel speed sensors, and the vehicle has an electronically controlled brake system which permits a driver-independent buildup and modulation of the braking forces at the individual wheels of the vehicle, wherein when a risk of a collision is detected, in a first phase a turning-in operation by the driver is assisted and/or in a second phase a steering operation by the driver is damped. Furthermore, an electronic control unit for a brake system is defined.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: April 21, 2015
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Kai Bretzigheimer, Daniel Förster, Ning Bian, Andreas Hartmann, Thorsten Staab
  • Publication number: 20140303845
    Abstract: A method for a driver assistance system for a vehicle is specified, wherein objects in the surroundings of a vehicle are detected on the basis of data of a system that covers the surroundings, and a potential free zone in which only no objects and/or objects which the vehicle can drive over have been reliably detected is determined. The potential free zone is verified by further vehicle and/or surroundings information.
    Type: Application
    Filed: February 29, 2012
    Publication date: October 9, 2014
    Applicant: CONTINENTAL TEVES AG & CO. OHG
    Inventors: Andreas Hartmann, Ning Bian, Kai Bretzigheimer, Thorsten Staab, Daniel Förster
  • Publication number: 20140288785
    Abstract: A method in which the driving behavior of a vehicle is influenced as a function of data on the surroundings in order to assist an avoidance maneuver, as soon as a risk of a collision is detected on the basis of the data from one or more environment sensors, in particular radar sensors and/or cameras, and the data from one or more vehicle sensors, in particular a steering angle sensor and/or yaw rate sensor and/or wheel speed sensors, and the vehicle has an electronically controlled brake system which permits a driver-independent buildup and modulation of the braking forces at the individual wheels of the vehicle, wherein when a risk of a collision is detected, in a first phase a turning-in operation by the driver is assisted and/or in a second phase a steering operation by the driver is damped. Furthermore, an electronic control unit for a brake system is defined.
    Type: Application
    Filed: August 10, 2011
    Publication date: September 25, 2014
    Applicant: CONTINENTAL TEVES AG & CO. OHG
    Inventors: Kai Bretzigheimer, Daniel Förster, Ning Bian, Andreas Hartmann, Thorsten Staab
  • Patent number: 8437907
    Abstract: In a method for determining a roadway state (STATE) of a roadway on which a vehicle (10) is travelling which has at least one wheel (14) and an acceleration sensor (24) which is assigned to the wheel (14), in order to determine a vertical component of an acceleration of the wheel (14), a characteristic value which is representative of the roadway state (STATE) is determined as a function of a measured signal (AC_VERT) of the acceleration sensor (18).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 7, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Ning Bian, Celine Gamulescu, Andreas Mayer, Thomas Schweiger
  • Patent number: 8370019
    Abstract: A friction coefficient between at least one tire of a motor vehicle and a roadway is estimated recursively. A kingpin inclination angle is detected or measured. A model determines a lateral friction value by defining a functional correlation between that value and the angle such that a non-linear course of that value relative to the angle is dependant on an initial increase of that value relative to the angle and on a recursively determined estimated value of the friction coefficient. The initial increase is defined substantially independently from the recursively determined estimated value. In addition, a measurement variable of the driving dynamics is captured. Depending on the lateral friction value, the driving dynamics model variable is determined. Furthermore, a variance between the driving dynamics measurement variable and the driving dynamics model value is determined. The recursion when acquiring the estimated value includes that the estimated value is adjusted.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: February 5, 2013
    Assignee: Continental Automotive GmbH
    Inventors: Ning Bian, Jens Fiedler, Celine Gamulescu, Andreas Mayer
  • Publication number: 20110015906
    Abstract: In a method for determining a coefficient of friction between a motor vehicle tire of a motor vehicle and the surface of a roadway, a first coefficient of friction parameter (?est—used,ij) is determined using a model (RM) in which a functional correlation between the first coefficient of friction parameter (?est—used,ij) and a slip (Sij) of the motor vehicle tire is set. A second coefficient of friction parameter (?quasi—meas—used,ij) is determined from the quotient between a longitudinal force (FL) and a vertical force (FZ) of the motor vehicle tire. The first and the second coefficient of friction parameters (?est—used,ij, ?quasi—meas—used,ij) are used to determine the coefficient of friction (?R,ij) by a recursive estimation algorithm.
    Type: Application
    Filed: November 7, 2008
    Publication date: January 20, 2011
    Inventors: Ning Bian, Celine Gamulescu, Thomas Haas, Matthias Kretschmann
  • Publication number: 20100145567
    Abstract: The invention relates to a method for determining a roadway state (STATE) of a roadway on which a vehicle (10) is travelling which has at least one wheel (14) and an acceleration sensor (24) which is assigned to the wheel (14) in order to determine a vertical component of an acceleration of the wheel (14), in which method—a characteristic value which is representative of the roadway state (STATE) is determined as a function of a measured signal (AC_VERT) of the acceleration sensor (18).
    Type: Application
    Filed: October 31, 2007
    Publication date: June 10, 2010
    Inventors: Ning Bian, Celine Gamulescu, Andreas Mayer, Thomas Schweiger
  • Publication number: 20100145566
    Abstract: A friction coefficient between at least one tire of a motor vehicle and a roadway is estimated recursively. A kingpin inclination angle is detected or measured. A model determines a lateral friction value by defining a functional correlation between that value and the angle such that a non-linear course of that value relative to the angle is dependant on an initial increase of that value relative to the angle and on a recursively determined estimated value of the friction coefficient. The initial increase is defined substantially independently from the recursively determined estimated value. In addition, a measurement variable of the driving dynamics is captured. Depending on the lateral friction value, the driving dynamics model variable is determined. Furthermore, a variance between the driving dynamics measurement variable and the driving dynamics model value is determined. The recursion when acquiring the estimated value includes that the estimated value is adjusted.
    Type: Application
    Filed: October 22, 2007
    Publication date: June 10, 2010
    Inventors: Ning Bian, Jens Fiedler, Celine Gamulescu, Andereas Mayer