Patents by Inventor Nir KEDEM

Nir KEDEM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11916198
    Abstract: Fast-charging lithium ion cells are provided, which have electrolytes that do not react with the cell anodes, but instead form a solid-electrolyte interphase (SEI) on the cathodes. Advantageously, such electrolytes improve the performance of the fast-charging cells, and enhance their lifetime and safety. Various electrolyte solutions and lithium ions are proposed to limit electrolyte interactions to the cathodes, or possibly even minimize or prevent these reactions by coating the cathodes. Redox couples may be used to prevent SEI formation on the anode, while promoting SEI formation on the cathode.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: February 27, 2024
    Assignee: STOREDOT LTD.
    Inventors: Nir Pour, Dafna Meron, Daniel Hirshberg, Nir Kedem, Evgenia Llel Kuks
  • Patent number: 11652200
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: May 16, 2023
    Assignee: STOREDOT LTD.
    Inventors: Shaked Rosenne, Ron Paz, Nir Kedem, Doron Burshtain, Nir Baram, Nir Pour, Daniel Aronov
  • Publication number: 20210242500
    Abstract: Lithium ion batteries and electrolytes therefor are provided, which include electrolyte additives having dithioester functional group(s) that stabilize the SEI (solid-electrolyte interface) at the surfaces of the anode material particles, and/or stabilize the CEI (cathode electrolyte interface) at the surfaces of the cathode material particles, and/or act as oxygen scavengers to prevent cell degradation. The electrolyte additives having dithioester functional group(s) may function as polymerization controlling and/or chain transfer agents that regulate the level of polymerization of other electrolyte components, such as VC (vinyl carbonate) and improve the formation and operation of the batteries. The lithium ion batteries may have metalloid-based anodes—including mostly Si, Ge and/or Sn as anode active material particles.
    Type: Application
    Filed: January 28, 2020
    Publication date: August 5, 2021
    Applicant: StoreDot Ltd.
    Inventors: Nir KEDEM, Liron AMIR, Evgenia Liel (Jeny) KUKS, Ido HERZOG, Shirel COHEN, Rony SCHWARZ, Eran SELLA
  • Publication number: 20210203002
    Abstract: Fast-charging lithium ion cells are provided, which have electrolytes that do not react with the cell anodes, but instead form a solid-electrolyte interphase (SEI) on the cathodes. Advantageously, such electrolytes improve the performance of the fast-charging cells, and enhance their lifetime and safety. Various electrolyte solutions and lithium ions are proposed to limit electrolyte interactions to the cathodes, or possibly even minimize or prevent these reactions by coating the cathodes. Redox couples may be used to prevent SEI formation on the anode, while promoting SEI formation on the cathode.
    Type: Application
    Filed: December 27, 2020
    Publication date: July 1, 2021
    Applicant: STOREDOT LTD.
    Inventors: Nir Pour, Dafina Meron, Daniel Hirshberg, Nir Kedem, Evgenia LIel Kuks
  • Patent number: 10923712
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: December 30, 2018
    Date of Patent: February 16, 2021
    Assignee: STOREDOT LTD.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10910671
    Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: February 2, 2021
    Assignee: STOREDOT LTD.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10818919
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: October 27, 2020
    Assignee: STOREDOT LTD.
    Inventors: Doron Burshtain, Nir Kedem, Eran Sella, Daniel Aronov, Hani Farran, Leora Shapiro
  • Patent number: 10680289
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 9, 2020
    Assignee: Storedot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Eran Sella, Daniel Aronov
  • Publication number: 20200144592
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Application
    Filed: January 7, 2020
    Publication date: May 7, 2020
    Applicant: StoreDot Ltd.
    Inventors: Shaked ROSENNE, Ron Paz, Nir Kedem, Doron Burshtain, Nir Baram, Nir Pour, Daniel Aronov
  • Publication number: 20200006811
    Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.
    Type: Application
    Filed: September 10, 2019
    Publication date: January 2, 2020
    Applicant: StoreDot Ltd.
    Inventors: Doron BURSHTAIN, Nir KEDEM, Daniel ARONOV
  • Publication number: 20190393562
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Application
    Filed: August 7, 2019
    Publication date: December 26, 2019
    Applicant: STOREDOT LTD.
    Inventors: Doron BURSHTAIN, Nir Kedem, Eran Sella, Daniel Aronov
  • Patent number: 10461323
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: October 29, 2019
    Assignee: Storedot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Eran Sella, Daniel Aronov
  • Patent number: 10454104
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 22, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10439254
    Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 8, 2019
    Assignee: Storedot Ltd.
    Inventors: Ron Paz, Nir Kedem, Doron Burshtain, Nir Baram, Nir Pour, Daniel Aronov
  • Patent number: 10424814
    Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 24, 2019
    Assignee: Storedot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10396354
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: August 27, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10367192
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: July 30, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Patent number: 10355271
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: July 16, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov
  • Publication number: 20190185495
    Abstract: This invention is related to a method for the preparation of halide perovskite or perovskite-related materials on a substrate and to optoelectronic devices and photovoltaic cells comprising the perovskites prepared by the methods of this invention The method for the preparation of the perovskite includes a direct conversion of elemental metal or metal alloy to halide perovskite or perovskite-related materials.
    Type: Application
    Filed: May 8, 2017
    Publication date: June 20, 2019
    Applicant: YE DA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: David CAHEN, Gary MODES, Yevgeny RAKITA, Nir KEDEM
  • Patent number: 10312504
    Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 4, 2019
    Assignee: StoreDot Ltd.
    Inventors: Doron Burshtain, Nir Kedem, Daniel Aronov