Patents by Inventor Nirali Shah

Nirali Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9093745
    Abstract: An electronic device may have a conductive housing with an antenna window. A display cover layer may be mounted on the front face of the device. Antenna and proximity sensor structures may include a dielectric support structure with a notch. The antenna window may have a protruding portion that extends into the notch between the display cover layer and the antenna and proximity sensor structures. The antenna and proximity sensor structures may have an antenna feed that is coupled to a first conductive layer by a high pass circuit and capacitive proximity sensor circuitry that is coupled to the first conductive layer and a parallel second conductive layer by a low pass circuit. The first conductive layer may be formed from a metal coating on the support structure. The second conductive layer may be formed from patterned metal traces in a flexible printed circuit.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: July 28, 2015
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Nirali Shah, Qingxiang Li, Robert W. Schlub
  • Patent number: 9048537
    Abstract: An electronic device may have a conductive housing with an antenna window. A display cover layer may be mounted on the front face of the device. Antenna and proximity sensor structures may include a dielectric support structure with a notch. The antenna window may have a protruding portion that extends into the notch between the display cover layer and the antenna and proximity sensor structures. The antenna and proximity sensor structures may have an antenna feed that is coupled to a first conductive layer by a high pass circuit and capacitive proximity sensor circuitry that is coupled to the first conductive layer and a parallel second conductive layer by a low pass circuit. The first conductive layer may be formed from a metal coating on the support structure. The second conductive layer may be formed from patterned metal traces in a flexible printed circuit.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 2, 2015
    Assignee: Apple Inc.
    Inventors: Salih Yarga, Nirali Shah, Qingxiang Li, Robert W. Schlub
  • Patent number: 8995926
    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Ming-Ju Tsai, Liang Han, Xu Han, Anand Lakshmanan, Nanbo Jin, Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Jayesh Nath, Yijun Zhou, Hao Xu, Yuehui Ouyang, Nirali Shah, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20140087668
    Abstract: Radio frequency test systems for characterizing antenna performance in various radio coexistence scenarios are provided. In one suitable arrangement, a test system may be used to perform passive radio coexistence characterization. During passive radio coexistence characterization, at least one signal generator may be used to feed aggressor signals directly to antennas within an electronic device under test (DUT). The aggressor signals may generate undesired interference signals in a victim frequency band, which can then be received and analyzed using a spectrum analyzer. During active radio coexistence characterization, at least one radio communications emulator may be used to communicate with a DUT via a first test antenna. While the DUT is communicating with the at least one radio communications emulator, test signals may also be conveyed between DUT 10 and a second test antenna. Test signals conveyed through the second test antenna may be used in obtaining signal interference level measurements.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: Apple Inc
    Inventors: Matthew A. Mow, Thomas E. Biedka, Ming-Ju Tsai, Liang Han, Xu Han, Anand Lakshmanan, Nanbo Jin, Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Jayesh Nath, Yijun Zhou, Hao Xu, Yuehui Ouyang, Nirali Shah, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Publication number: 20130300618
    Abstract: An electronic device may have a conductive housing with an antenna window. A display cover layer may be mounted on the front face of the device. Antenna and proximity sensor structures may include a dielectric support structure with a notch. The antenna window may have a protruding portion that extends into the notch between the display cover layer and the antenna and proximity sensor structures. The antenna and proximity sensor structures may have an antenna feed that is coupled to a first conductive layer by a high pass circuit and capacitive proximity sensor circuitry that is coupled to the first conductive layer and a parallel second conductive layer by a low pass circuit. The first conductive layer may be formed from a metal coating on the support structure. The second conductive layer may be formed from patterned metal traces in a flexible printed circuit.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Inventors: Salih Yarga, Nirali Shah, Qingxiang Li, Robert W. Schlub