Patents by Inventor Nitish Swarup

Nitish Swarup has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140276950
    Abstract: Methods, apparatus, and systems for controlling a telesurgical system are disclosed. In accordance with a method, a first tool connected to a first manipulator of the system, and a second tool connected to a second manipulator of the system, are controlled. A swap of the tools such that the first tool is connected to the second manipulator and the second tool is connected to the first manipulator is then detected. The first tool connected to the second manipulator and the second tool connected to the first manipulator are then controlled.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Publication number: 20140276953
    Abstract: Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Nitish Swarup, Arjang Hourtash, Paul Mohr
  • Publication number: 20140188131
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Application
    Filed: December 31, 2013
    Publication date: July 3, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20140052154
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both. A set-up mode employs an intuitive user interface in which one or more joints are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. The system may provide a detent-like manual articulation that is not limited to mechanically pre-defined detent joint configurations.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup
  • Publication number: 20140052153
    Abstract: Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. One or more kinematic linkage sub-systems may include joints that are actively driven, passive, or a mix of both, and may employ a set-up mode in which one or more of the joints are actively driven in response to manual articulation of one or more other joints of the kinematic chain. In an exemplary embodiment, the actively driven joints will move a platform structure that supports multiple manipulators in response to movement of one of the manipulators, facilitating and expediting the arrangement of the overall system by moving those multiple manipulators as a unit into alignment with the workspace. Manual independent positioning of the manipulator can be provided through passive set-up joint systems supporting the manipulators relative to the platform.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 20, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Paul Griffiths, Paul Mohr, Nitish Swarup, Michael Costa, David Larkin, Thomas Cooper
  • Publication number: 20140039745
    Abstract: A wheel assembly having a motor attached to a hub within the wheel assembly such that the motor powers the wheel assembly to rotate about an axle once the motor receives a predetermined amount of power. A battery system is configured to deliver power to said motor, the battery system is arranged to rotate with the wheel assembly. A sensor system within the wheel assembly provides data related to velocity and angle of orientation of the assembly. A control system within the wheel assembly receives data related to velocity and angle of orientation of the wheel assembly from the sensor system, with the control system having at least one output to from the battery system indicative of an amount of power that is delivered to the motor.
    Type: Application
    Filed: September 16, 2013
    Publication date: February 6, 2014
    Applicant: Belon Engineering, Inc.
    Inventors: Juan Bautista Belon, Shu-Hsun Chiang, Paul Daniel Faucher, Ya-Fang Ke, David Meyer, Nitish Swarup, Hsing-Han Tsai, Hsin-Chih Bautista Chen, Chia-Wen Chang
  • Patent number: 8634957
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 21, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Patent number: 8538615
    Abstract: A wheel assembly having a motor attached to a hub within the wheel assembly such that the motor powers the wheel assembly to rotate about an axle once the motor receives a predetermined amount of power. A battery system is configured to deliver power to said motor, the battery system is arranged to rotate with the wheel assembly. A sensor system within the wheel assembly provides data related to velocity and angle of orientation of the assembly. A control system within the wheel assembly receives data related to velocity and angle of orientation of the wheel assembly from the sensor system, with the control system having at least one output to from the battery system indicative of an amount of power that is delivered to the motor.
    Type: Grant
    Filed: February 6, 2010
    Date of Patent: September 17, 2013
    Assignee: Belon Engineering Inc.
    Inventors: Hsin-Chih Chen, Shu-Hsun Chiang, Paul Daniel Faucher, Ya-Fang Ke, David Meyer, Nitish Swarup, Hsing-Han Tsai, Juan Bautista Belon, Chia-Wen Chang
  • Publication number: 20130110130
    Abstract: In one embodiment of the invention, a control system for a robotic surgical instrument is provided including a torque saturation limiter, a torque to current converter coupled to the torque saturation limiter, and a motor coupled to the torque to current converter. The torque saturation limiter receives a desired torque signal for one or more end effectors and limits the desired torque to a range between an upper torque limit and a lower torque limit generating a bounded torque signal. The torque to current converter transforms a torque signal into a current signal. The motor drives an end effector of one or more end effectors to the bounded torque signal in response to the first current signal.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 2, 2013
    Inventors: SCOTT MANZO, NITISH SWARUP
  • Publication number: 20130006268
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 3, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Scott E. Manzo
  • Publication number: 20120197182
    Abstract: In one embodiment of the invention, a robotic surgical system is provided including a master control console and a surgical manipulator. The master control console generates control signals to cause one or more fluids to flow into or out of a surgical site. The surgical manipulator is coupled to the console to receive the control signals and includes at least one robotic arm and a surgical instrument coupled thereto. The surgical manipulator controls the surgical instrument in response to the control signals to control the flow of the one or more fluids into or out of the surgical site. The surgical instrument has a first robotically controlled valve that is responsive to the surgical manipulator and a hollow tube having a first end coupled to the first robotically controlled valve with an opening at a second end to direct the flow of one or more fluids.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 2, 2012
    Applicant: Intuitive Surgical, Inc.
    Inventors: Paul Millman, David Bailey, Dean Hoornaert, David Stephen Mintz, David Q. Larkin, John Magnasco, Gary Guthurt, Nitish Swarup, Salvatore Brogna
  • Patent number: 8231638
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 31, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Scott Manzo
  • Publication number: 20120190920
    Abstract: The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive a to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Christopher J. Hasser, Nitish Swarup, Thomas G. Cooper, S. Christopher Anderson
  • Patent number: 8224484
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 17, 2012
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Nitish Swarup, Scott Manzo
  • Publication number: 20120179169
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 12, 2012
    Inventors: Nitish Swarup, Scott Manzo
  • Publication number: 20110301754
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 8, 2011
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Tom Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20110278909
    Abstract: A wheel assembly having a motor attached to a hub within the wheel assembly such that the motor powers the wheel assembly to rotate about an axle once the motor receives a predetermined amount of power. A battery system is configured to deliver power to said motor, the battery system is arranged to rotate with the wheel assembly. A sensor system within the wheel assembly provides data related to velocity and angle of orientation of the assembly. A control system within the wheel assembly receives data related to velocity and angle of orientation of the wheel assembly from the sensor system, with the control system having at least one output to from the battery system indicative of an amount of power that is delivered to the motor.
    Type: Application
    Filed: February 6, 2010
    Publication date: November 17, 2011
    Inventors: Hsin-Chih Chen, Shu-Hsun Chiang, Paul Daniel Faucher, Ya-Fang Ke, David Meyer, Nitish Swarup, Hsing-Han Tsai, Juan Bautista Belon, Chia-Wen Chang
  • Patent number: 7983793
    Abstract: Robotic devices, systems, and methods for use in robotic surgery and other robotic applications, and/or medical instrument devices, systems, and methods includes both a reusable processor and a limited-use robotic tool or medical treatment probe. A memory the limited-use component includes machine readable code with data and/or programming instructions to be implemented by the processor. Programming of the processor can be updated by shipping of new data once downloaded by the processor from a component, subsequent components can take advantage of the updated processor without repeated downloading.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 19, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Gregory K. Toth, Nitish Swarup, Thomas R. Nixon, David Q. Larkin, Steven J. Colton
  • Publication number: 20090088774
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Application
    Filed: February 8, 2008
    Publication date: April 2, 2009
    Inventors: Nitish Swarup, Scott Manzo
  • Publication number: 20090088775
    Abstract: In one implementation, a method is disclosed in which a lock sensing mode is entered for a robotic surgical instrument. In the lock sensing mode, the degrees of freedom of movement in the robotic surgical instrument are switchably reduced. Further in the lock sensing mode, one or more end effectors of the robotic surgical instrument are switchably clamped together in the robotic surgical instrument. An increased level of torque may also be applied to the end effectors to increase a gripping force applied by the one or more end effectors in response to the reduced degrees of freedom of movement in the robotic surgical instrument.
    Type: Application
    Filed: February 8, 2008
    Publication date: April 2, 2009
    Inventors: Nitish Swarup, Scott Manzo