Patents by Inventor Nobuhiro Yasui

Nobuhiro Yasui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140034839
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Patent number: 8637825
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: January 28, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Patent number: 8624194
    Abstract: A radiation detecting device is manufactured by a method that includes forming a scintillator layer on a substrate carrying a plurality of photodetectors and a plurality of convex patterns each including a plurality of convexities, the plurality of convex patterns coinciding with the respective photodetectors, the scintillator layer being formed in such a manner as to extend over the plurality of convex patterns; and forming a crack in a portion of the scintillator layer that coincides, in a stacking direction, with a gap between adjacent ones of the convex patterns by cooling the substrate carrying the scintillator layer. The plurality of convex patterns satisfy specific conditions.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: January 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Ueyama, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Patent number: 8618489
    Abstract: A scintillator crystal to be used for a radiation detector such as X-ray CT apparatus has a unidirectional phase-separated structure and provides a light guiding function without forming partitions to prevent any crosstalk. The scintillator crystal comprises a phase-separated structure including a plurality of first crystal phases of the columnar crystals with unidirectionality and a second crystal phase covering lateral surfaces of the first crystal phases. At least the second crystal phase comprises CuI and emits light when excited by radiation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: December 31, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshihiro Ohashi, Nobuhiro Yasui, Toru Den
  • Publication number: 20130341512
    Abstract: A porous scintillator crystal capable of suppressing scattering of light that represents a high spatial resolution is provided. The porous scintillator crystal comprises a porous structure including voids, wherein the porous structure is a phase-separated structure having voids formed therein and comprises materials constituting a eutectic composition of the phase-separated structure and at least one void in the porous structure extend in a direction perpendicular to a principal plane of the porous scintillator crystal.
    Type: Application
    Filed: March 22, 2012
    Publication date: December 26, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yoshihiro Ohashi, Nobuhiro Yasui, Toru Den
  • Publication number: 20130327945
    Abstract: There is provided a compound represented by the general formula Cs3Cu2[I1-xClx]5, wherein x is 0.71 or more and 0.79 or less. Also, there is provided a method for producing a compound, comprising mixing cesium iodide, cesium chloride, and copper chloride together in such a manner that the molar ratio of cesium to copper to iodine to chlorine is 3:2:5(1-x):5x (wherein 0.71?x?0.79), melting the resulting mixture, and solidifying the resulting molten material to give a compound.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 12, 2013
    Inventors: Yoshinori Shibutani, Ryoko Ueyama, Nobuhiro Yasui, Toru Den
  • Patent number: 8586931
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Patent number: 8506845
    Abstract: A scintillator material contains a compound represented by a general formula [Cs1-zRbz][I1-x-yBrxCly]:In. In the general formula, x, y, and z satisfy any one of conditions (1), (2), and (3) below. (1) When 0<x+y<1 and z=0, at least one of Mathematical formula 1 and Mathematical formula 2 is satisfied. (2) When 0<x+y<1 and 0<z<1, at least one of Mathematical formula 3 and 0<y<1 is satisfied. (3) When x=y=0, the relationship 0<z<1 is satisfied. The content of indium (In) is 0.00010 mole percent or more and 1.0 mole percent or less relative to [Cs1-zRbz][I1-x-yBrxCly]. [Math. 1] 0<x?0.7??(Math. 1) 0<y?0.8??(Math. 2) 0<x?0.8??(Math.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 13, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yoshihiro Ohashi, Nobuhiro Yasui, Toru Den
  • Publication number: 20130026374
    Abstract: Provided is a radiation detector, including: a two-dimensional light receiving element including a plurality of pixels; and a scintillator layer having multiple scintillator crystals two-dimensionally arranged on a light receiving surface of the two-dimensional light receiving element, in which: the scintillator crystal includes two crystal phases, which are a first crystal phase including a material including a plurality of columnar crystals extending in a direction perpendicular to the light receiving surface of the two-dimensional light receiving element and having a refractive index n1, and a second crystal phase including a material existing between the plurality of columnar crystals and having a refractive index n2; and a material having a refractive index n3 is placed between adjacent scintillator crystals, the refractive index n3 satisfying a relationship of one of n1?n3?n2 and n2?n3?n1.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 31, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Saito, Tatsuya Iwasaki, Nobuhiro Yasui, Toru Den
  • Publication number: 20130022169
    Abstract: Provided is a radiation detecting device, including: a scintillator which emits light when radiation is irradiated thereto; and a photosensor array having light receiving elements for receiving the emitted light which are two-dimensionally arranged, in which: the scintillator has a phase separation structure for propagating the light emitted inside the scintillator in a light propagating direction, the phase separation structure being formed by embedding multiple columnar portions formed of a first material in a second material; the radiation is irradiated to the scintillator from a direction which is not in parallel to the light propagating direction; and the light emitted inside the scintillator is propagated through the scintillator in the light propagating direction and is received by the photosensor array which is placed so as to face an end face of the scintillator.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 24, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Iwasaki, Nobuhiro Yasui, Toru Den
  • Publication number: 20130015357
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 17, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Publication number: 20130015360
    Abstract: A radiation detector including a scintillator structure comprising a first plane and a second plane which are not positioned on the same plane, the scintillator structure having an optical waveguiding property in a direction between the first plane and the second plane; and a two-dimensional light receiving element formed of multiple pixels which are disposed parallel to either one of the first plane and the second plane. The radiation detector includes at least one smoothness-deteriorate region which is positioned in one of the first plane and the second plane of the scintillator structure and has an area of 1/6 or more of a light receiving area of each of the multiple pixels. The region is repaired by an optically transparent material so as to be smoothed.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 17, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tamaki Kobayashi, Tatsuya Saito, Nobuhiro Yasui, Toru Den
  • Patent number: 8344328
    Abstract: A position detector includes a photodetector having photodetecting elements; and a scintillator crystal having uniaxial optical anisotropy. The scintillator crystal is continuous in a uniaxial direction, is disposed on the photodetector such that the uniaxial direction is not perpendicular to the normal to a photodetecting surface, and has a length at least three times the pitch of the photodetecting elements. The uniaxial anisotropy allows at least 4% of scintillation light emitted from a region farthest above the photodetecting surface to reach the photodetecting elements, and allows from 4% to 35% of scintillation light emitted from a region closest to the photodetecting surface to reach the photodetecting elements.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Den, Tatsuya Saito, Nobuhiro Yasui, Ryoko Horie
  • Publication number: 20120312999
    Abstract: Provided is a radiation detecting element, including: needle crystal scintillators and a protruding pattern in which: one end of the needle crystal scintillators is in contact with of upper surfaces of the multiple protrusions; a gap corresponding to a gap between the multiple protrusions is provided between portions of the needle crystal scintillators in contact with the upper surfaces of the multiple protrusions; and a number of the needle crystal scintillators in contact with one of the upper surfaces is 5 or less. Conventionally, since the needle crystals exhibit a state of a polycrystalline film in an early stage of vapor deposition, and light also spreads in a horizontal direction, the light received by a photodetector portion and the spatial resolution was lower than ideal values. The present invention enables the deviating region to be the ideal state in an early stage of growth.
    Type: Application
    Filed: May 16, 2012
    Publication date: December 13, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tomoyuki Oike, Nobuhiro Yasui, Toru Den, Yoshihiro Ohashi, Ryoko Horie
  • Patent number: 8329001
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Publication number: 20120292516
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Application
    Filed: January 12, 2011
    Publication date: November 22, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Publication number: 20120256093
    Abstract: A radiation detecting device is manufactured by a method that includes forming a scintillator layer on a substrate carrying a plurality of photodetectors and a plurality of convex patterns each including a plurality of convexities, the plurality of convex patterns coinciding with the respective photodetectors, the scintillator layer being formed in such a manner as to extend over the plurality of convex patterns; and forming a crack in a portion of the scintillator layer that coincides, in a stacking direction, with a gap between adjacent ones of the convex patterns by cooling the substrate carrying the scintillator layer. The plurality of convex patterns satisfy specific conditions.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Ueyama, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Publication number: 20120248317
    Abstract: A scintillator crystal to be used for a radiation detector such as X-ray CT apparatus has a unidirectional phase-separated structure and provides a light guiding function without forming partitions to prevent any crosstalk. The scintillator crystal comprises a phase-separated structure including a plurality of first crystal phases of the columnar crystals with unidirectionality and a second crystal phase covering lateral surfaces of the first crystal phases. At least the second crystal phase comprises CuI and emits light when excited by radiation.
    Type: Application
    Filed: March 16, 2012
    Publication date: October 4, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yoshihiro Ohashi, Nobuhiro Yasui, Toru Den
  • Publication number: 20120161074
    Abstract: A scintillator material contains a compound represented by a general formula [Cs1-zRbz][I1-x-yBrxCly]:In. In the general formula, x, y, and z satisfy any one of conditions (1), (2), and (3) below. (1) When 0<x+y<1 and z=0, at least one of Mathematical formula 1 and Mathematical formula 2 is satisfied. (2) When 0<x+y<1 and 0<z<1, at least one of Mathematical formula 3 and 0<y<1 is satisfied. (3) When x=y=0, the relationship 0<z<1 is satisfied. The content of indium (In) is 0.00010 mole percent or more and 1.0 mole percent or less relative to [Cs1-zRbz][I1-x-yBrxCly]. [Math. 1] 0<x?0.7??(Math. 1) 0<y?0.8??(Math. 2) 0<x?0.8??(Math.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 28, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yoshihiro Ohashi, Nobuhiro Yasui, Toru Den
  • Patent number: 8138011
    Abstract: A method of manufacturing a radiation-detecting device including spaced first columnar scintillators, second columnar scintillators which are located between the neighboring first columnar scintillators and which are spaced from the first columnar scintillators, and photodetecting elements overlapping with the first columnar scintillators includes a step of preparing the substrate such that the substrate has a surface having an uneven section having protruding portions and a plurality of spaced flat sections surrounded by the uneven section and also includes a step of forming the first columnar scintillators and the second columnar scintillators on the flat sections and the protruding portions, respectively, by depositing a scintillator material on the substrate having the uneven section and the flat sections. The uneven section has recessed portions and satisfies the following inequality: h/d?1 where h is the depth of each recessed portion and d is the distance between the protruding portions.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 20, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Saito, Ryoko Horie, Nobuhiro Yasui, Toru Den