Patents by Inventor Nobuyuki Nishiyama

Nobuyuki Nishiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11232901
    Abstract: A method for producing a magnetic core includes a processing step of giving a desired shape to a strip made of an alloy composition, a heat-treating step of forming bcc-Fe crystals, and then a stacking step of obtaining a magnetic core having a shape. Here, the alloy composition is Fe—B—Si—P—Cu—C and has an amorphous phase as a primary phase. In the heat-treating step, the strip is heated up to a temperature higher than a crystallization temperature of the alloy composition at a high heating rate.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 25, 2022
    Assignees: TOHOKU MAGNET INSTITUTE CO., LTD., PANASONIC CORPORATION
    Inventors: Akihiro Makino, Nobuyuki Nishiyama, Kana Takenaka, Yukio Nishikawa, Terutsugu Segawa
  • Patent number: 10636567
    Abstract: A heat treatment apparatus for a laminated body of amorphous alloy ribbon includes: a lamination jig that holds the laminated body of amorphous alloy ribbon; two heating plates that sandwich the laminated body from upper and lower surfaces in a lamination direction without coming into contact with the lamination jig; and a heating control apparatus that controls a heating temperature of the two heating plates.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: April 28, 2020
    Assignees: TOHOKU MAGNET INSTITUTE CO., LTD., PANASONIC CORPORATION
    Inventors: Akihiro Makino, Nobuyuki Nishiyama, Terutsugu Segawa, Tohru Kojima, Yukio Nishikawa
  • Patent number: 10461589
    Abstract: A magnetic-plate laminated body includes: a laminated part made up of a plurality of laminated soft magnetic ribbons; first and second metal plates that sandwich the laminated part from upper and lower surfaces in a lamination direction of the laminated part; and a fastening mechanism that penetrates the first and second metal plates and the laminated part and fastening the laminated part by the first and second metal plates.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: October 29, 2019
    Assignees: TOHOKU MAGNET INSTITUTE CO., LTD., PANASONIC CORPORATION
    Inventors: Akihiro Makino, Nobuyuki Nishiyama, Yukio Nishikawa, Tohru Kojima, Takeshi Ogawa
  • Patent number: 10388444
    Abstract: Alloy powder of a composition formula Fe100-a-b-c-d-e-fCoaBbSicPdCueCf having an amorphous phase as a main phase is provided. Parameters satisfy the following conditions: 3.5?a?4.5 at %, 6?b?15 at %, 2?c?11 at %, 3?d?5 at %, 0.5?e?1.1 at %, and 0?f?2 at %. With this composition, the alloy powder has good magnetic characteristics even when it has a large particle diameter such as 90 ?m. Therefore, yield thereof is improved.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: August 20, 2019
    Assignee: TOHOKU MAGNET INSTITUTE CO., LTD.
    Inventors: Akihiro Makino, Nobuyuki Nishiyama, Parmanand Sharma, Kana Takenaka
  • Publication number: 20180166213
    Abstract: A method for producing a magnetic core includes a processing step of giving a desired shape to a strip made of an alloy composition, a heat-treating step of forming bcc-Fe crystals, and then a stacking step of obtaining a magnetic core having a shape. Here, the alloy composition is Fe—B—Si—P—Cu—C and has an amorphous phase as a primary phase. In the heat-treating step, the strip is heated up to a temperature higher than a crystallization temperature of the alloy composition at a high heating rate.
    Type: Application
    Filed: July 1, 2016
    Publication date: June 14, 2018
    Applicants: TOHOKU MAGNET INSTITUTE CO., LTD., PANASONIC CORPORATION
    Inventors: Akihiro MAKINO, Nobuyuki NISHIYAMA, Kana TAKENAKA, Yukio NISHIKAWA, Terutsugu SEGAWA
  • Publication number: 20170229930
    Abstract: A magnetic-plate laminated body includes: a laminated part made up of a plurality of laminated soft magnetic ribbons; first and second metal plates that sandwich the laminated part from upper and lower surfaces in a lamination direction of the laminated part; and a fastening mechanism that penetrates the first and second metal plates and the laminated part and fastening the laminated part by the first and second metal plates.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 10, 2017
    Inventors: Akihiro MAKINO, Nobuyuki NISHIYAMA, Yukio NISHIKAWA, Tohru KOJIMA, Takeshi OGAWA
  • Publication number: 20170229237
    Abstract: A heat treatment apparatus for a laminated body of amorphous alloy ribbon includes: a lamination jig that holds the laminated body of amorphous alloy ribbon; two heating plates that sandwich the laminated body from upper and lower surfaces in a lamination direction without coming into contact with the lamination jig; and a heating control apparatus that controls a heating temperature of the two heating plates.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 10, 2017
    Inventors: Akihiro MAKINO, Nobuyuki NISHIYAMA, Terutsugu SEGAWA, Tohru KOJIMA, Yukio NISHIKAWA
  • Publication number: 20170162308
    Abstract: Alloy powder of a composition formula Fe100-a-b-c-d-e-fCoaBbSicPdCueCf having an amorphous phase as a main phase is provided. Parameters satisfy the following conditions: 3.5?a?4.5 at %, 6?b?15 at %, 2?c?11 at %, 3?d?5 at %, 0.5?e?1.1 at %, and 0?f?2 at %. With this composition, the alloy powder has good magnetic characteristics even when it has a large particle diameter such as 90 ?m. Therefore, yield thereof is improved.
    Type: Application
    Filed: July 17, 2015
    Publication date: June 8, 2017
    Applicant: TOHOKU UNIVERSITY
    Inventors: Akihiro MAKINO, Nobuyuki NISHIYAMA, Parmanand SHARMA, Kana TAKENAKA
  • Patent number: 9666325
    Abstract: Disclosed is a beryllium-free copper alloy having high strength, high electric conductivity and good bending workability and a method of manufacturing the copper alloy. Provided is a copper alloy having a composition represented by the composition formula by atom %: Cu100-a-b-c(Zr, Hf)a(Cr, Ni, Mn, Ta)b(Ti, Al)c [wherein 2.5?a?4.0, 0.1<b?1.5 and 0?c?0.2; (Zr, Hf) means one or both of Zr and Hf; (Cr, Ni, Mn, Ta) means one or more of Cr, Ni, Mn and Ta; and (Ti, Al) means one or both of Ti and Al], and having Cu primary phases in which the mean secondary dendrite arm spacing is 2 ?m or less and eutectic matrices in which the lamellar spacing between a metastable Cu5(Zr, Hf) compound phase and a Cu phase is 0.2 ?m or less.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 30, 2017
    Assignee: TOHOKU UNIVERSITY
    Inventors: Akihisa Inoue, Nobuyuki Nishiyama, Haruko Yamazaki
  • Publication number: 20140190596
    Abstract: Disclosed is a beryllium-free copper alloy having high strength, high electric conductivity and good bending workability and a method of manufacturing the copper alloy. Provided is a copper alloy having a composition represented by the composition formula by atom %: Cu100-a-b-c(Zr, Hf)a(Cr, Ni, Mn, Ta)b(Ti, Al)c [wherein 2.5?a?4.0, 0.1<b?1.5 and 0?c?0.2; (Zr, Hf) means one or both of Zr and Hf; (Cr, Ni, Mn, Ta) means one or more of Cr, Ni, Mn and Ta; and (Ti, Al) means one or both of Ti and Al], and having Cu primary phases in which the mean secondary dendrite arm spacing is 2 ?m or less and eutectic matrices in which the lamellar spacing between a metastable Cu5(Zr, Hf) compound phase and a Cu phase is 0.2 ?m or less.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 10, 2014
    Applicant: TOHOKU UNIVERSITY
    Inventors: Akihisa Inoue, Nobuyuki Nishiyama, Haruko Yamazaki
  • Patent number: 6582538
    Abstract: A molten alloy having an amorphous forming ability is pressure-solidified at a pressure exceeding one atmospheric pressure to eliminate casting defects. The cooling rate during the solidification is adjusted to disperse fine crystals having a mean crystal grain diameter of 1 nm to 50 &mgr;m and a volume percentage of 5 to 40% in an amorphous alloy ingot. In this way, a uniform residual compressive stress is imparted in the amorphous alloy ingot. Furthermore, the amorphous ingot produced by this method can be strengthened by heating it at a constant temperature rising rate to infiltrate at least one of boron, carbon, oxygen, nitrogen and fluorine from the surface of the amorphous alloy ingot in a supercooled liquid state before crystallization, to thereby precipitate a high melting point compound thereof with an element forming the amorphous alloy within the alloy ingot so as to strength the alloy.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: June 24, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Nobuyuki Nishiyama
  • Patent number: 6306228
    Abstract: A molten alloy was pressure-solidified under a pressure exceeding one atmospheric pressure to eliminate casting defects. The molten alloy was solidified by applying a cooling rate difference to the surface and the interior of the molten alloy to allow a compressive stress layer to remain on the surface of the amorphous alloy ingot and a tensile stress layer in the interior portion. Thus, a amorphous alloy sheet having a thickness of 1 mm or more and excellent in bending strength and impact strength is obtained.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 23, 2001
    Assignee: Japan Science and Technology Corporation
    Inventors: Akihisa Inoue, Tao Zhang, Nobuyuki Nishiyama
  • Patent number: 6027586
    Abstract: Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: February 22, 2000
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Nobuyuki Nishiyama, Hiroyuki Horimura, Toshisuke Shibata
  • Patent number: 5807468
    Abstract: An electrode having an excellent corrosion resistance and long service life even in a severe corrosive environment such as in NaCl solutions for anode electrolysis in which chlorine gas or the like is produced at a high potential from the alloy surface. The electrode of the invention is provided using a precious metal-based amorphous alloy which has a good plasticity processibility and is applicable to a large-sized component. The object is implemented by provision of an electrode material for anode electrolysis which utilizes a precious metal-based amorphous alloy which satisfies the general formula NM.sub.100-a-b-c Ni.sub.a Cu.sub.b P.sub.c wherein NM comprises one or two precious metal elements selected from Pd and Pt; a, b and c being atomic percent, satisfy that 30.ltoreq.a+b.ltoreq.45,3.ltoreq.b/a.ltoreq.7, and 18.ltoreq.c.ltoreq.25, respectively; Pt is contained from 10 to 30 atom percent (at. %); and wherein a temperature width .DELTA.Tx in the supercooled liquid region (.DELTA.
    Type: Grant
    Filed: April 9, 1997
    Date of Patent: September 15, 1998
    Assignee: Japan Science and Technology Corporation
    Inventors: Takumi Sakamoto, Takeshi Suto, Takahiro Aoki, Nobuyuki Nishiyama, Akihisa Inoue, Hisamichi Kimura, Yasusi Takahagi, Takeshi Kamoshida, Kazuya Saito
  • Patent number: 5423923
    Abstract: Deposition of a hard film of Ti-Si-N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at % .ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise. By this method there can be obtained a film having fine TiN crystalline particles uniformly dispersed in the matrix phase of Ti-Si amorphous metal or a film of functionally gradient structure in which the ratio of fine TiN crystalline particles dispersed in the matrix phase increases continuously or stepwise in the direction of thickness of the film.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 13, 1995
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto, Akihisa Inoue, Honda Motor Co., Ltd.
    Inventors: Hiroshi Yamagata, Tadashi Yamaguchi, Hideki Takeda, Nobuyuki Nishiyama, Katsutoshi Nozaki, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5405458
    Abstract: Deposition of a hard film of Ti--Si--N composite material on a substrate is carried out by using a source of evaporation possessing a composition of Ti.sub.a Si.sub.b (wherein "a" and "b" stand for atomic percentages respectively falling in the ranges of 75 at %.ltoreq.a.ltoreq.85 at % and 15 at %.ltoreq.b.ltoreq.25 at %, providing a+b=100 at %). Deposition is effected by a sputtering process or ion plating process in an atmosphere of an inert gas containing a nitrogen-containing reaction gas while controlling the feed rate of the reaction gas into a chamber in such a manner that the partial pressure of nitrogen is kept constant or varied continuously or stepwise.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: April 11, 1995
    Assignees: Yoshida Kogyo K.K., Tsuyoshi Masumoto, Akihisa Inoue, Honda Motor Co., Ltd., Teikoko Piston Ring Co., Ltd.
    Inventors: Hiroshi Yamagata, Tadashi Yamaguchi, Hideki Takeda, Nobuyuki Nishiyama, Katsutoshi Nozaki, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5348591
    Abstract: An amorphous magnesium alloy has a composition of Mg.sub.a M.sub.b X.sub.c (M is Zn and/or Ga, X is La, Ce, Mm (misch metal), Y, Nd, Pr, Sm and Gd), a is from 65 to 96.5 atomic %, b is from 3 to 30 atomic %, and c is from 0.2 to 8 atomic %). The magnesium alloy has a high specific strength and does not embrittle at room temperature.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: September 20, 1994
    Assignees: Tsuyoshi Masumoto, Toyota Jidosha Kabushiki Kaisha, Yoshida Kogyo K.K., Teikoku Piston Ring Co., Ltd.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Akira Kato, Toshisuke Shibata, Nobuyuki Nishiyama
  • Patent number: 5324368
    Abstract: Disclosed herein is a process for forming an amorphous alloy material capable of showing glass transition, which comprises holding the material between frames arranged in combination; and heating the material at a temperature between its glass transition temperature (Tg) and its crystallization temperature (Tx) and, at the same time, producing a pressure difference between opposite sides of the material, whereby the material is brought into close contact against a forming mold disposed on one side of the material. As an alternative, the forming mold is brought into close contact against the amorphous material in a direction opposite to the pressing direction for the amorphous material. By the above processes, precision-formed products of amorphous alloys can be manufactured and supplied at low cost.
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: June 28, 1994
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Nobuyuki Nishiyama, Hiroyuki Horimura, Toshisuke Shibata
  • Patent number: 3994830
    Abstract: An adsorbent of nitrohumic acid series with an improved alkali-resistance is prepared by insolubilizing calcium nitrohumate, kneading the insolubilized product with a water-soluble polyacrylamide in the presence of water, shaping the mixture into a desired form and then subjecting it to a heat treatment followed by an acid treatment. The adsorbent thus obtained can effectively be used for removing heavy metals from an alkaline effluent without causing any deterioration of adsorptive quality and coloration of the effluent.
    Type: Grant
    Filed: February 24, 1975
    Date of Patent: November 30, 1976
    Assignees: Agency of Industrial Science & Technology, Hokutan Chemical Industry Co. Ltd.
    Inventors: Kazuki Terajima, Shigeru Tomita, Yoshindo Matsuda, Keiji Abe, Kozo Higuchi, Keigo Iwashita, Nobuyuki Nishiyama, Yasuo Kato