Patents by Inventor Nobuyuki Yamada

Nobuyuki Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961996
    Abstract: Provided are: a negative electrode material for nonaqueous secondary batteries, which can yield a high-capacity nonaqueous secondary battery having excellent discharge rate characteristics; and a negative electrode for nonaqueous secondary batteries and a nonaqueous secondary battery. Also provided is a nonaqueous secondary battery having excellent charge-discharge efficiency. The negative electrode material for nonaqueous secondary batteries includes carbonaceous particles (A) and silicon oxide particles (B), and satisfies the followings: a) the average particle size (50% cumulative particle size from the smaller particle side; d50) is 3 ?m to 30 ?m, and the 10% cumulative particle size from the smaller particle side (d10) is 0.1 ?m to 10 ?m; b) the ratio (R1=d90/d10) between the 90% cumulative particle size from the smaller particle side (d90) and the d10 is 3 to 20; and c) the ratio (R2=d50/d10) between the d50 and the d10 is 1.7 to 5.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 16, 2024
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Naoto Maru, Atsushi Watarai
  • Publication number: 20240117082
    Abstract: Even when used in applications such as electronic materials, display materials, and inks, in which required standards in terms of coloring prevention, long term stability, low impurity content, and the like, are extremely high, the present invention can meet such required standards. The present invention addresses the problem of providing an allylamine (co)polymer which overcomes the limitations of the prior art, undergoes little coloring, contains little impurities and exhibits excellent long term stability; and a method for producing the same. This problem can be solved by an allylamine (co)polymer which has constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 11, 2024
    Applicant: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki YAMADA, Masaru BUNYA
  • Patent number: 11948740
    Abstract: To provide an electrode for an electricity storage device, which electrode employs a porous conductor having conductive nanostructures formed on its surface and makes it possible to provide a less expensive electricity storage device having a high discharge capacity and high charge/discharge cycle resistance. A porous conductor which is used as an electrode for an electricity storage device has a plurality of conductive nanostructures on a surface of the porous conductor.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 2, 2024
    Assignees: National University Corporation Chiba University, TOMOEGAWA CORPORATION
    Inventors: Katsuyoshi Hoshino, Yousuke Sugawara, Rio Yamada, Aoi Magori, Nobuyuki Aoki, Keiichiro Haji, Daisuke Muramatsu
  • Publication number: 20240103400
    Abstract: Provided is a developer replenishing container including: a developer containing part capable of containing a developer; a discharge port through which the developer contained in the developer containing part is discharged; a conveyance part conveying the developer in the developer containing part by rotating; and a displacement part displaceable in conjunction with rotation of the conveyance part in the developer in a vicinity of the discharge port, and including a moving member capable of reciprocating in conjunction with the rotation of the conveyance part and a biasing member which biases the moving member and which is expandable according to movement of the moving member.
    Type: Application
    Filed: November 3, 2023
    Publication date: March 28, 2024
    Inventors: Nobuyuki Yomoda, Yusuke Yamada, Ayatomo Okino, Manabu Jimba, Akihito Kamura
  • Patent number: 11942040
    Abstract: In a display device having a non-rectangular display unit, occurrence of a difference in luminance between a region with a high load and a region with a low load is suppressed. A region inside the display unit is segmented into a high-load region with a high load on horizontal scanning lines (an initialization control line and a write control line) and a low-load region with a low load on horizontal scanning lines. An initialization control line and a write control line that are disposed in the high-load region are driven by a discharge driver and a scan driver, respectively. An initialization control line and a write control line that are disposed in the low-load region both are driven by, for example, the discharge driver.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 26, 2024
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Makoto Yokoyama, Nobuyuki Taya, Junichi Yamada
  • Patent number: 11936044
    Abstract: A carbon material for a non-aqueous secondary battery containing a graphite capable of occluding and releasing lithium ions, and having a cumulative pore volume at pore diameters in a range of 0.01 ?m to 1 ?m of 0.08 mL/g or more, a roundness, as determined by flow-type particle image analysis, of 0.88 or greater, and a pore diameter to particle diameter ratio (PD/d50 (%)) of 1.8 or less, the ratio being given by equation (1A): PD/d50 (%)=mode pore diameter (PD) in a pore diameter range of 0.01 ?m to 1 ?m in a pore distribution determined by mercury intrusion/volume-based average particle diameter (d50)×100 is provided.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 19, 2024
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Satoshi Akasaka, Daigo Nagayama, Shingo Morokuma, Koichi Nishio, Iwao Soga, Hideaki Tanaka, Takashi Kameda, Tooru Fuse, Hiromitsu Ikeda
  • Publication number: 20240069457
    Abstract: The toner contains binder resin-containing toner particles and silica fine particle S1, wherein the weight-average particle diameter of the toner is 4.0-15.0 ?m, both inclusive, peaks originating with the silica fine particle S1 are observed in 29 Si-NMR measurement of the silica fine particle S1, and, in the spectrum obtained by 29Si CP/MAS NMR or 29Si DD/MAS NMR, the peak area of a peak corresponding to the D1 unit structure in the silica fine particle S1, the peak area of a peak corresponding to the D2 unit structure in the silica fine particle S1, and the peak area of a peak corresponding to the Q unit structure in the silica fine particle S1 satisfy a prescribed relationship.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 29, 2024
    Inventors: RYUJI MURAYAMA, SHIN KITAMURA, TORU TAKAHASHI, DAISUKE TSUJIMOTO, RYUICHIRO MATSUO, HITOSHI SANO, NOBUYUKI FUJITA, SHUJI YAMADA, YUKA GUNJI, TAKAKUNI KOBORI, YOSHIHIRO OGAWA, ATSUHIKO OHMORI, HIROKI KAGAWA, KEISUKE ADACHI, TOMOKO SUGITA
  • Patent number: 10988577
    Abstract: Provided are a copolymer of diallylamines and sulfur dioxide having a high molecular weight and a low content amount of impurities such as halogens, and a production method with which it is possible to produce such a copolymer relatively simply and at low cost. This problem is solved by: a copolymer having a weight-average molecular weight of 150,000 or higher obtained by GPC measurement and a degree of polymerization of 1000 or higher, the copolymer being obtained by copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure; and a method for producing a copolymer, the method having a step for copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure in ethylene glycol or in propylene glycol monomethyl ether.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 27, 2021
    Assignee: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki Yamada, Masaru Bunya
  • Publication number: 20200123284
    Abstract: Even when used in applications such as electronic materials, display materials, and inks, in which required standards in terms of coloring prevention, long term stability, low impurity content, and the like, are extremely high, the present invention can meet such required standards. The present invention addresses the problem of providing an allylamine (co)polymer which overcomes the limitations of the prior art, undergoes little coloring, contains little impurities and exhibits excellent long term stability; and a method for producing the same. This problem can be solved by an allylamine (co)polymer which has constituent units derived from allylamine and contains sulfuric acid groups in the structure thereof, in which the proportion of the sulfuric acid groups with respect to the total mass of the allylamine (co)polymer is 20,000 ppm by mass or less.
    Type: Application
    Filed: June 19, 2018
    Publication date: April 23, 2020
    Applicant: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki YAMADA, Masaru BUNYA
  • Publication number: 20190367683
    Abstract: Provided are a copolymer of diallylamines and sulfur dioxide having a high molecular weight and a low content amount of impurities such as halogens, and a production method with which it is possible to produce such a copolymer relatively simply and at low cost. This problem is solved by: a copolymer having a weight-average molecular weight of 150,000 or higher obtained by GPC measurement and a degree of polymerization of 1000 or higher, the copolymer being obtained by copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure; and a method for producing a copolymer, the method having a step for copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure in ethylene glycol or in propylene glycol monomethyl ether.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Applicant: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki YAMADA, Masaru BUNYA
  • Patent number: 10442895
    Abstract: Provided are a copolymer of diallylamines and sulfur dioxide having a high molecular weight and a low content amount of impurities such as halogens, and a production method with which it is possible to produce such a copolymer relatively simply and at low cost. This problem is solved by: a copolymer having a weight-average molecular weight of 150,000 or higher obtained by GPC measurement and a degree of polymerization of 1000 or higher, the copolymer being obtained by copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure; and a method for producing a copolymer, the method having a step for copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure in ethylene glycol or in propylene glycol monomethyl ether.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: October 15, 2019
    Assignee: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki Yamada, Masaru Bunya
  • Publication number: 20180186937
    Abstract: Provided are a copolymer of diallylamines and sulfur dioxide having a high molecular weight and a low content amount of impurities such as halogens, and a production method with which it is possible to produce such a copolymer relatively simply and at low cost. This problem is solved by: a copolymer having a weight-average molecular weight of 150,000 or higher obtained by GPC measurement and a degree of polymerization of 1000 or higher, the copolymer being obtained by copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure; and a method for producing a copolymer, the method having a step for copolymerizing sulfur dioxide and a sulfonate or alkyl sulfate salt of diallylamines having a specific structure in ethylene glycol or in propylene glycol monomethyl ether.
    Type: Application
    Filed: October 7, 2016
    Publication date: July 5, 2018
    Applicant: NITTO BOSEKI CO., LTD.
    Inventors: Nobuyuki YAMADA, Masaru BUNYA
  • Patent number: 9632543
    Abstract: Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 25, 2017
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshihiro Tada, Yuichiro Nakata, Junji Fujino, Yoshitsugu Uedaira, Nobuyuki Yamada, Takeshi Yoshida, Masahide Tanaka
  • Patent number: 9568385
    Abstract: A semiconductor pressure sensor (720) includes a thin film piezoelectric element (701) which applies strain to a portion of a semiconductor substrate that corresponds to a thin region (402). The thin film piezoelectric element (701) is formed at a distance away from diffusion resistors (406, 408, 410, and 412) functioning as strain gauges and is extended to the proximity of a bonding pad (716A) connected to an upper electrode layer of the thin film piezoelectric element and a bonding pad (716F) connected to a lower electrode thereof. The diffusion resistors (406, 408, 410, and 412) constitute a bridge circuit by metal wiring (722) and diffusion wiring (724). During self-diagnosis, a prescribed voltage is applied to a thin film piezoelectric element (701). If the output difference of the bridge circuit between before and after the voltage application falls outside a prescribed range, it is determined that a breakage occurs in the semiconductor pressure sensor (720).
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 14, 2017
    Assignee: Rohm Co., Ltd.
    Inventors: Nobuyuki Yamada, Masahiro Sakuragi, Takeshi Yoshida, Kei Hayashi
  • Patent number: 9003883
    Abstract: In an angular velocity sensor, an upper electrode of a first piezoelectric element and a lower electrode of a second piezoelectric element are connected to an input terminal of a first Q/V conversion circuit, and a lower electrode of the first piezoelectric element and an upper electrode of the second piezoelectric element are connected to an input terminal of a second Q/V conversion circuit. Thus, vibration noise components of the quantities of charge generated at the first and second piezoelectric elements are cancelled out, and Coriolis components of the quantities of charge generated at the first and second piezoelectric elements are added, whereby only the Coriolis components are extracted.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: April 14, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Kei Hayashi, Nobuyuki Yamada, Takeshi Yoshida
  • Publication number: 20150084904
    Abstract: Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Yoshihiro Tada, Yuichiro Nakata, Junji Fujino, Yoshitsugu Uedaira, Nobuyuki Yamada, Takeshi Yoshida, Masahide Tanaka
  • Publication number: 20140311249
    Abstract: A semiconductor pressure sensor (720) includes a thin film piezoelectric element (701) which applies strain to a portion of a semiconductor substrate that corresponds to a thin region (402). The thin film piezoelectric element (701) is formed at a distance away from diffusion resistors (406, 408, 410, and 412) functioning as strain gauges and is extended to the proximity of a bonding pad (716A) connected to an upper electrode layer of the thin film piezoelectric element and a bonding pad (716F) connected to a lower electrode thereof. The diffusion resistors (406, 408, 410, and 412) constitute a bridge circuit by metal wiring (722) and diffusion wiring (724). During self-diagnosis, a prescribed voltage is applied to a thin film piezoelectric element (701). If the output difference of the bridge circuit between before and after the voltage application falls outside a prescribed range, it is determined that a breakage occurs in the semiconductor pressure sensor (720).
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Nobuyuki Yamada, Masahiro Sakuragi, Takeshi Yoshida, Kei Hayashi
  • Patent number: 8770035
    Abstract: A semiconductor pressure sensor (720) includes a thin film piezoelectric element (701) which applies strain to a portion of a semiconductor substrate that corresponds to a thin region (402). The thin film piezoelectric element (701) is formed at a distance away from diffusion resistors (406, 408, 410, and 412) functioning as strain gauges and is extended to the proximity of a bonding pad (716A) connected to an upper electrode layer of the thin film piezoelectric element and a bonding pad (716F) connected to a lower electrode thereof. The diffusion resistors (406, 408, 410, and 412) constitute a bridge circuit by metal wiring (722) and diffusion wiring (724). During self-diagnosis, a prescribed voltage is applied to a thin film piezoelectric element (701). If the output difference of the bridge circuit between before and after the voltage application falls outside a prescribed range, it is determined that a breakage occurs in the semiconductor pressure sensor (720).
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: July 8, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Nobuyuki Yamada, Masahiro Sakuragi, Takeshi Yoshida, Kei Hayashi
  • Publication number: 20120206414
    Abstract: Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
    Type: Application
    Filed: October 15, 2010
    Publication date: August 16, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Yoshihiro Tada, Yuichiro Nakata, Junji Fujino, Yoshitsugu Uedaira, Nobuyuki Yamada, Takeshi Yoshida, Masahide Tanaka
  • Patent number: 8189325
    Abstract: A switchgear case is partitioned into a high voltage bus bar chamber, which contains bus bars and cable heads, a high voltage device chamber containing circuit breakers and operation mechanisms and a low voltage control chamber containing a relay and measurement devices, etc. A rear wall of the case has a first suction port disposed at a lower part thereof, wherein the high voltage bus bar chamber, high voltage device chamber and the low voltage control chamber are communicated and air passing through the chambers is discharged from a first discharging port of the casing. The bus bars electrically connecting the high voltage devices in the high voltage device chamber and connecting bars connecting the adjoining bus bars and the cable heads are covered with solid insulators for solid-insulation.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 29, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Kurogi, Kenji Tsuchiya, Naoki Nakatsugawa, Takumi Ishikawa, Nobuyuki Yamada