Patents by Inventor Noemi Graziana Sparta

Noemi Graziana Sparta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10910510
    Abstract: The disclosure relates to an encapsulated flexible electronic device comprising a flexible electronic device, wherein the flexible electronic device is protected by a protective coating layer, a first cover sheet and a second cover sheet being made of patterned and developed dry photoresist films. The encapsulated flexible electronic device may be used to directly realize different type of electronic devices, such as smart sensor devices.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 2, 2021
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 10256356
    Abstract: Solar thin film modules are provided with reduced lateral dimensions of isolation trenches and contact trenches, which provide for a series connection of the individual solar cells. To this end lithography and etch techniques are applied to pattern the individual material layers, thereby reducing parasitic shunt leakages compared to conventional laser scribing techniques. In particular, there may be series connected solar cells formed on a flexible substrate material that are highly efficient in indoor applications.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 9, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Marina Foti, Noemi Graziana Sparta′, Salvatore Lombardo, Silvestra DiMarco, Sebastiano Ravesi, Cosimo Gerardi
  • Patent number: 9797860
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 24, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 9476852
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: October 25, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 9331151
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: May 3, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Sebastiano Ravesi, Corrado Accardi, Cristina Tringali, Noemi Graziana Sparta′, Stella Loverso, Filippo Giannazzo
  • Publication number: 20160116431
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Corrado ACCARDI, Stella LOVERSO, Sebastiano RAVESI, Noemi Graziana SPARTA
  • Publication number: 20160116432
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Corrado ACCARDI, Stella LOVERSO, Sebastiano RAVESI, Noemi Graziana SPARTA
  • Patent number: 9324825
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: April 26, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Publication number: 20160111588
    Abstract: The disclosure relates to an encapsulated flexible electronic device comprising a flexible electronic device, wherein the flexible electronic device is protected by a protective coating layer, a first cover sheet and a second cover sheet being made of patterned and developed dry photoresist films. The encapsulated flexible electronic device may be used to directly realize different type of electronic devices, such as smart sensor devices.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 21, 2016
    Inventors: Corrado ACCARDI, Stella LOVERSO, Sebastiano RAVESI, Noemi Graziana SPARTA
  • Publication number: 20160079457
    Abstract: Solar thin film modules are provided with reduced lateral dimensions of isolation trenches and contact trenches, which provide for a series connection of the individual solar cells. To this end lithography and etch techniques are applied to pattern the individual material layers, thereby reducing parasitic shunt leakages compared to conventional laser scribing techniques. In particular, there may be series connected solar cells formed on a flexible substrate material that are highly efficient in indoor applications.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: MARINA FOTI, NOEMI GRAZIANA SPARTA', SALVATORE LOMBARDO, SILVESTRA DIMARCO, SEBASTIANO RAVESI, COSIMO GERARDI
  • Patent number: 9276149
    Abstract: Solar thin film modules are provided with reduced lateral dimensions of isolation trenches and contact trenches, which provide for a series connection of the individual solar cells. To this end lithography and etch techniques are applied to pattern the individual material layers, thereby reducing parasitic shunt leakages compared to conventional laser scribing techniques. In particular, there may be series connected solar cells formed on a flexible substrate material that are highly efficient in indoor applications.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: March 1, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Marina Foti, Noemi Graziana Sparta, Salvatore Lombardo, Silvestra Dimarco, Sebastiano Ravesi, Cosimo Gerardi
  • Publication number: 20150303264
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Sebastiano Ravesi, Corrado Accardi, Cristina Tringali, Noemi Graziana Sparta', Stella Loverso, Filippo Giannazzo
  • Patent number: 9099305
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: August 4, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Noemi Graziana Sparta', Cristina Tringali, Stella Loverso, Sebastiano Ravesi, Corrado Accardi, Filippo Giannazzo
  • Patent number: 9091932
    Abstract: The disclosure relates to a three-dimensional integrated structure comprising a substrate and a plurality of projecting elements projecting from a flat surface thereof and obtained from a patterned and developed dry film photoresist. Advantageously, the three-dimensional integrated structure is highly defined, the projecting elements obtained by the patterned and developed dry film photoresist having a shape factor greater than 6. The three-dimensional integrated structure can be used to directly realize different type of electronic devices, such as microfluidic devices, microreactors or sensor devices.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: July 28, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 9087692
    Abstract: A method transfers a graphene layer from a donor substrate onto a final substrate. The method includes: providing a metal layer on the donor substrate; and growing a graphene layer on the metal layer. The method also includes: laminating a dry film photo-resist on the graphene layer; laminating a tape on the dry film photo-resist; chemically. etching the metal layer, obtaining an initial structure that includes the tape, the dry film photo-resist and the graphene layer; laminating the initial structure on the final substrate; thermally realizing the tape, so as to obtain an intermediate structure that includes the dry film photo-resist, the graphene layer and the final substrate; removing the dry film photo-resist; and obtaining a final structure that includes the final substrate with a transferred graphene layer.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 21, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Publication number: 20140319655
    Abstract: The present disclosure regards a method for coupling a graphene layer to a substrate having at least one hydrophilic surface, the method comprising the steps of providing the substrate having at least one hydrophilic surface, depositing on the hydrophilic surface a layer of a solvent selected in the group constituted by acetone, ethyl lactate, isopropyl alcohol, methylethyl ketone and mixtures thereof and depositing on the solvent layer a graphene layer. It moreover regards an electronic device comprising the graphene/substrate structure obtained.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Noemi Graziana Sparta', Cristina Tringali, Stella Loverso, Sebastiano Ravesi, Corrado Accardi, Filippo Giannazzo
  • Publication number: 20130334579
    Abstract: A manufacturing method of an electrochemical sensor comprises forming a graphene layer on a donor substrate, laminating a film of dry photoresist on the graphene layer, removing the donor substrate to obtain an intermediate structure comprising the film of dry photoresist and the graphene layer, and laminating the intermediate structure onto a final substrate with the graphene layer in electrical contact with first and second electrodes positioned on the final substrate. The film of dry photoresist is then patterned to form a microfluidic structure on the graphene layer and an additional dry photoresist layer is laminated over the structure. In one type of sensor manufactured by this process, the graphene layer acts as a channel region of a field-effect transistor, whose conductive properties vary according to characteristics of an analyte introduced into the microfluidic structure.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Patent number: 8575005
    Abstract: A method of manufacturing an electronic device on a plastic substrate includes: providing a carrier as a rigid support for the electronic device; providing a metallic layer on the carrier; forming the plastic substrate on the metallic layer, the metallic layer guaranteeing a temporary bonding of the plastic substrate to the carrier; forming the electronic device on the plastic substrate; and releasing the carrier from the plastic substrate. Releasing the carrier comprises immersing the electronic device bonded to the carrier in a oxygenated water solution that breaks the bonds between the plastic substrate and the metallic layer.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Publication number: 20130071611
    Abstract: The disclosure relates to a three-dimensional integrated structure comprising a substrate and a plurality of projecting elements projecting from a flat surface thereof and obtained from a patterned and developed dry film photoresist. Advantageously, the three-dimensional integrated structure is highly defined, the projecting elements obtained by the patterned and developed dry film photoresist having a shape factor greater than 6. The three-dimensional integrated structure can be used to directly realize different type of electronic devices, such as microfluidic devices, microreactors or sensor devices.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 21, 2013
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Corrado Accardi, Stella Loverso, Sebastiano Ravesi, Noemi Graziana Sparta
  • Publication number: 20130032197
    Abstract: Solar thin film modules are provided with reduced lateral dimensions of isolation trenches and contact trenches, which provide for a series connection of the individual solar cells. To this end lithography and etch techniques are applied to pattern the individual material layers, thereby reducing parasitic shunt leakages compared to conventional laser scribing techniques. In particular, there may be series connected solar cells formed on a flexible substrate material that are highly efficient in indoor applications.
    Type: Application
    Filed: July 24, 2012
    Publication date: February 7, 2013
    Applicant: STMicroelectronics S.r.I.
    Inventors: MARINA FOTI, NOEMI GRAZIANA SPARTA, SALVATORE LOMBARDO, SILVESTRA DIMARCO, SEBASTIANO RAVESI, COSIMO GERARDI