Patents by Inventor Norbert Ebel

Norbert Ebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9363015
    Abstract: An embodiment of the invention relates to an optical module comprising at least one optoelectronic component capable of generating or receiving radiation; at least one access port for receiving or emitting the radiation; at least one free-space beam path located between the access port and the optoelectronic component; at least one mirror located in said beam path; at least one attenuation unit located in said beam path; the attenuation unit having a reflecting surface section and an absorbing surface section; and, a control unit for adjusting the amount of radiation which is directed towards the absorbing surface section of the attenuation unit by controlling at least one or all of the following: the position of the mirror, the orientation of the mirror, the position of the attenuation unit and/or the orientation of the attenuation unit.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: June 7, 2016
    Assignee: FINISAR GERMANY GMBH
    Inventors: Benjamin Voelker, Norbert Ebel
  • Publication number: 20160043804
    Abstract: An embodiment of the invention relates to an optical module comprising at least one optoelectronic component capable of generating or receiving radiation; at least one access port for receiving or emitting the radiation; at least one free-space beam path located between the access port and the optoelectronic component; at least one mirror located in said beam path; at least one attenuation unit located in said beam path; the attenuation unit having a reflecting surface section and an absorbing surface section; and, a control unit for adjusting the amount of radiation which is directed towards the absorbing surface section of the attenuation unit by controlling at least one or all of the following: the position of the mirror, the orientation of the mirror, the position of the attenuation unit and/or the orientation of the attenuation unit.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 11, 2016
    Inventors: Benjamin VOELKER, Norbert EBEL
  • Patent number: 7300211
    Abstract: A device for sending or receiving optical signals wherein an opto-electrical transducer (5), an associated glass fiber (8) and other elements (6, 7) of a sending or receiving circuit are arranged on a common support; namely, a circuit board (1) comprising different multiple layers of insulation material and intermediate layers of metal, with a recess (2) containing an opening (3) and a bottom (4) on which conducting tracks are located, where at least some of them are impedance-matched. The transducer (5) and the other elements (6, 7) are located entirely in the recess (2) and are connected to the conducting tracks. At least some of the conducting tracks protrude laterally from the recess (2) into the surrounding edge areas of the circuit board (1), where at least some are connected to impedance-matched conductors (11) which extend to a common surface inside the circuit board (1) and respectively end on a contact surface (12).
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: November 27, 2007
    Assignee: Mergeoptics GmbH
    Inventor: Norbert Ebel
  • Publication number: 20050058405
    Abstract: A device for sending or receiving optical signals wherein an opto-electrical transducer (5), an associated glass fiber (8) and other elements (6, 7) of a sending or receiving circuit are arranged on a common support; namely, a circuit board (1) comprising different multiple layers of insulation material and intermediate layers of metal, with a recess (2) containing an opening (3) and a bottom (4) on which conducting tracks are located, where at least some of them are impedance-matched. The transducer (5) and the other elements (6, 7) are located entirely in the recess (2) and are connected to the conducting tracks. At least some of the conducting tracks protrude laterally from the recess (2) into the surrounding edge areas of the circuit board (1), where at least some are connected to impedance-matched conductors (11) which extend to a common surface inside the circuit board (1) and respectively end on a contact surface (12).
    Type: Application
    Filed: September 17, 2003
    Publication date: March 17, 2005
    Inventor: Norbert Ebel
  • Patent number: 6781727
    Abstract: The invention relates to an arrangement for operating an optical transmission or reception module at high data rates of up to 10 Gbit/s, having a TO package with electrical connections, an optical transmission or reception module arranged in the TO package, and a circuit board for making electrical contact with the electrical connections of the TO package. According to the invention, the circuit board (6) has RF lines (81, 82) and the electrical connections (41, 42) are connected to the RF lines (81, 82) in an arrangement parallel to the plane of the board. Preferably, provision is also made for an RF matching circuit to be produced on the board and for SMD components to be fitted directly and without further solder pads onto planar RF lines on the RF board. The cited measures serve to improve the RF properties of a TO module.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: August 24, 2004
    Assignee: Infineon Technologies AG
    Inventors: Franz Auracher, Norbert Ebel, Alfred Ebberg
  • Publication number: 20020085256
    Abstract: The invention relates to an arrangement for operating an optical transmission or reception module at high data rates of up to 10 Gbit/s, having a TO package with electrical connections, an optical transmission or reception module arranged in the TO package, and a circuit board for making electrical contact with the electrical connections of the TO package. According to the invention, the circuit board (6) has RF lines (81, 82) and the electrical connections (41, 42) are connected to the RF lines (81, 82) in an arrangement parallel to the plane of the board. Preferably, provision is also made for an RF matching circuit to be produced on the board and for SMD components to be fitted directly and without further solder pads onto planar RF lines on the RF board. The cited measures serve to improve the RF properties of a TO module.
    Type: Application
    Filed: December 18, 2000
    Publication date: July 4, 2002
    Inventors: Franz Auracher, Norbert Ebel, Alfred Ebberg