Patents by Inventor Norbert Thyssen

Norbert Thyssen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220238501
    Abstract: A method for wafer bonding includes: providing a semiconductor wafer having a first main face; fabricating at least one semiconductor device in the semiconductor wafer, wherein the semiconductor device is arranged at the first main face; generating trenches and a cavity in the semiconductor wafer such that the at least one semiconductor device is connected to the rest of the semiconductor wafer by no more than at least one connecting pillar; arranging the semiconductor wafer on a carrier wafer such that the first main face faces the carrier wafer; attaching the at least one semiconductor device to the carrier wafer; and removing the at least one semiconductor device from the semiconductor wafer by breaking the at least one connecting pillar.
    Type: Application
    Filed: January 25, 2022
    Publication date: July 28, 2022
    Inventors: Stefan Hampl, Marco Haubold, Kerstin Kaemmer, Norbert Thyssen
  • Publication number: 20220052091
    Abstract: A device for an image sensor is provided. The device includes a semiconductor device having a photo-sensitive region and a metallization stack for electrically contacting the photo-sensitive region. The photo-sensitive region is configured to generate an electric signal based on incident light. Further, the device includes an optical stack formed on a surface of the semiconductor device and configured to guide the incident light towards the photo-sensitive region. The optical stack includes a plurality of regions stacked on top of each other. The plurality of regions includes a filter region configured to selectively transmit the incident light only in a target wavelength range.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 17, 2022
    Inventors: Ines Uhlig, Kerstin Kaemmer, Dirk Offenberg, Norbert Thyssen
  • Patent number: 10784147
    Abstract: In accordance with an embodiment, a method for producing a buried cavity structure includes providing a mono-crystalline semiconductor substrate, producing a doped volume region in the mono-crystalline semiconductor substrate, wherein the doped volume region has an increased etching rate for a first etchant by comparison with an adjoining, undoped or more lightly doped material of the monocrystalline semiconductor substrate, forming an access opening to the doped volume region, and removing the doped semiconductor material in the doped volume region using the first etchant through the access opening to obtain the buried cavity structure.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: September 22, 2020
    Assignee: Infineon Technologies AG
    Inventors: Ines Uhlig, Kerstin Kaemmer, Norbert Thyssen
  • Publication number: 20190027399
    Abstract: In accordance with an embodiment, a method for producing a buried cavity structure includes providing a mono-crystalline semiconductor substrate, producing a doped volume region in the mono-crystalline semiconductor substrate, wherein the doped volume region has an increased etching rate for a first etchant by comparison with an adjoining, undoped or more lightly doped material of the monocrystalline semiconductor substrate, forming an access opening to the doped volume region, and removing the doped semiconductor material in the doped volume region using the first etchant through the access opening to obtain the buried cavity structure.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 24, 2019
    Inventors: Ines Uhlig, Kerstin Kaemmer, Norbert Thyssen
  • Patent number: 9915707
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: March 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20170160350
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Patent number: 9606197
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: March 28, 2017
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20150355295
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: August 19, 2015
    Publication date: December 10, 2015
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Patent number: 9202910
    Abstract: A lateral power semiconductor device includes a semiconductor body having a first surface and a second opposite surface, a first main electrode, a second main electrode, a plurality of switchable semiconductor cells and at least one curved semiconductor portion. The first main electrode includes at least two sections and is arranged on the first surface. The second main electrode is arranged on the first surface and between the two sections of the first main electrode. The plurality of switchable semiconductor cells is arranged between a respective one of the two sections of the first main electrode and the second main electrode and is configured to provide a controllable conductive path between the first main electrode and the second main electrode. The curved semiconductor portion is between the first main electrode and the second main electrode and has increasing doping concentration from the first main electrode to the second main electrode.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: December 1, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Norbert Thyssen, Rolf Weis
  • Patent number: 9146287
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 29, 2015
    Assignee: Infineon Technologies AG
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Publication number: 20140319610
    Abstract: A lateral power semiconductor device includes a semiconductor body having a first surface and a second opposite surface, a first main electrode, a second main electrode, a plurality of switchable semiconductor cells and at least one curved semiconductor portion. The first main electrode includes at least two sections and is arranged on the first surface. The second main electrode is arranged on the first surface and between the two sections of the first main electrode. The plurality of switchable semiconductor cells is arranged between a respective one of the two sections of the first main electrode and the second main electrode and is configured to provide a controllable conductive path between the first main electrode and the second main electrode. The curved semiconductor portion is between the first main electrode and the second main electrode and has increasing doping concentration from the first main electrode to the second main electrode.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Inventors: Anton Mauder, Norbert Thyssen, Rolf Weis
  • Publication number: 20120119735
    Abstract: Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 17, 2012
    Inventors: Juergen Zimmer, Klemens Pruegl, Olaf Kuehn, Andreas Strasser, Ralf-Rainer Schledz, Norbert Thyssen
  • Patent number: 8017902
    Abstract: A detector includes a first semiconductor substrate and a second substrate, wherein the first semiconductor substrate includes a detector element for detecting a radiation or a particle and the second substrate includes a control circuit. The detector element extends from a first main surface of the first semiconductor substrate to a second main surface of the first semiconductor substrate.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 13, 2011
    Assignee: Infineon Technologies AG
    Inventors: Achim Gratz, Norbert Thyssen
  • Publication number: 20100148039
    Abstract: A detector includes a first semiconductor substrate and a second substrate, wherein the first semiconductor substrate includes a detector element for detecting a radiation or a particle and the second substrate includes a control circuit. The detector element extends from a first main surface of the first semiconductor substrate to a second main surface of the first semiconductor substrate.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Inventors: Achim Gratz, Norbert Thyssen