Patents by Inventor Norihiro MUROYAMA

Norihiro MUROYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133829
    Abstract: A processing apparatus, a system, a method and a program for applying non-negative matrix factorization to one or more measured profiles of X-ray powder diffraction based on known information are provided. A processing apparatus for applying non-negative matrix factorization to a measured profile of X-ray powder diffraction comprises a measured profile acquiring section for acquiring one or more measured profiles, a known information acquiring section for acquiring known information including a shape of a predetermined profile corresponding to a background or a predetermined substance included in the measured profile, or a restriction of a coefficient matrix of the predetermined profile, and a decomposition section for applying non-negative matrix factorization to the measured profile based on the known information.
    Type: Application
    Filed: October 12, 2023
    Publication date: April 25, 2024
    Applicant: Rigaku Corporation
    Inventors: Takumi OTA, Norihiro MUROYAMA, Akihiro HIMEDA
  • Patent number: 11841334
    Abstract: A quantitative phase analysis device includes: a unit for acquiring a powder diffraction pattern of the sample; a unit for acquiring information on a plurality of crystalline phases; a unit for acquiring a fitting function for each of the plurality of crystalline phases; a unit for executing whole-powder pattern fitting for the powder diffraction pattern by using the acquired fitting functions, to thereby acquire a fitting result; and a unit for calculating a weight ratio of the plurality of crystalline phases based on the fitting result. Each fitting function is selected from the group consisting of a first fitting function using an integrated intensity obtained by whole-powder pattern decomposition, a second fitting function using an integrated intensity obtained by observation or calculation, and a third fitting function using a profile intensity obtained by observation or calculation.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: December 12, 2023
    Assignee: RIGAKU CORPORATION
    Inventors: Hideo Toraya, Norihiro Muroyama
  • Patent number: 11402341
    Abstract: A quantitative phase analysis device for analyzing non-crystalline phases comprising at least one microprocessor configured to: acquire the powder diffraction pattern of the sample; acquire information on one non-crystalline phase and one or more crystalline phases contained in the sample; acquire a fitting function; execute whole-powder pattern fitting, acquire a fitting result; and calculate a weight ratio of the one non-crystalline phase and the one or more crystalline phases. The fitting function for each of the one or more crystalline phases is one fitting function selected from the group consisting of a first fitting function that uses an integrated intensity obtained by whole-powder pattern decomposition, a second fitting function that uses an integrated intensity obtained by observation or calculation, and a third fitting function that uses a profile intensity obtained by observation or calculation. The fitting function for the one non-crystalline phase is the third fitting function.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: August 2, 2022
    Assignee: RIGAKU CORPORATION
    Inventors: Hideo Toraya, Norihiro Muroyama
  • Publication number: 20210018452
    Abstract: A quantitative phase analysis device for analyzing non-crystalline phases comprising at least one microprocessor configured to: acquire the powder diffraction pattern of the sample; acquire information on one non-crystalline phase and one or more crystalline phases contained in the sample; acquire a fitting function; execute whole-powder pattern fitting, acquire a fitting result; and calculate a weight ratio of the one non-crystalline phase and the one or more crystalline phases. The fitting function for each of the one or more crystalline phases is one fitting function selected from the group consisting of a first fitting function that uses an integrated intensity obtained by whole-powder pattern decomposition, a second fitting function that uses an integrated intensity obtained by observation or calculation, and a third fitting function that uses a profile intensity obtained by observation or calculation. The fitting function for the one non-crystalline phase is the third fitting function.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 21, 2021
    Inventors: Hideo Toraya, Norihiro Muroyama
  • Publication number: 20200173938
    Abstract: A quantitative phase analysis device includes: a unit for acquiring a powder diffraction pattern of the sample; a unit for acquiring information on a plurality of crystalline phases; a unit for acquiring a fitting function for each of the plurality of crystalline phases; a unit for executing whole-powder pattern fitting for the powder diffraction pattern by using the acquired fitting functions, to thereby acquire a fitting result; and a unit for calculating a weight ratio of the plurality of crystalline phases based on the fitting result. Each fitting function is selected from the group consisting of a first fitting function using an integrated intensity obtained by whole-powder pattern decomposition, a second fitting function using an integrated intensity obtained by observation or calculation, and a third fitting function using a profile intensity obtained by observation or calculation.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Hideo TORAYA, Norihiro MUROYAMA