Patents by Inventor Norikazu Ohta

Norikazu Ohta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8310248
    Abstract: A capacitive sensor device includes first and second sensor capacitors coupled in series, a clock signal generating part, an operational amplifier, a feedback capacitor, a compensating capacitor, and a compensating signal generating part. The clock signal generating part generates a first clock signal and the second clock signal applied to the first and second sensor capacitors, respectively. The compensating signal generating part generates a compensating signal applied to the compensating capacitor. The first clock signal and the second clock signal have the same frequency and the same amplitude and have phases being opposite each other. The compensating signal has a frequency same as the first clock signal and the second clock signal, has a phase same as one of the first clock signal and the second clock signal, and has an amplitude that is adjustable.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 13, 2012
    Assignee: DENSO CORPORATION
    Inventors: Keisuke Gotoh, Kentaro Mizuno, Norikazu Ohta
  • Patent number: 8008948
    Abstract: A peak voltage detector circuit detects a peak voltage of an input voltage. The input voltage is input into a first input terminal of a comparator. A counter circuit counts up a counter value in synchronization with a first clock signal, when a signal output from the comparator is in a first state. The counter circuit counts down the counter value in synchronization with a second clock signal. A digital-analog conversion circuit outputs an output voltage corresponding to the counter value, and the output voltage is input into a second input terminal of the comparator. The first clock signal has a wave period shorter than that of the second clock signal.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 30, 2011
    Assignee: DENSO CORPORATION
    Inventors: Yasuaki Makino, Hiroshi Okada, Reiji Iwamoto, Nobukazu Oba, Shinji Nakatani, Norikazu Ohta, Hideki Hosokawa
  • Publication number: 20100219848
    Abstract: A capacitive sensor device includes first and second sensor capacitors coupled in series, a clock signal generating part, an operational amplifier, a feedback capacitor, a compensating capacitor, and a compensating signal generating part. The clock signal generating part generates a first clock signal and the second clock signal applied to the first and second sensor capacitors, respectively. The compensating signal generating part generates a compensating signal applied to the compensating capacitor. The first clock signal and the second clock signal have the same frequency and the same amplitude and have phases being opposite each other. The compensating signal has a frequency same as the first clock signal and the second clock signal, has a phase same as one of the first clock signal and the second clock signal, and has an amplitude that is adjustable.
    Type: Application
    Filed: February 2, 2010
    Publication date: September 2, 2010
    Applicant: DENSO CORPORATION
    Inventors: Keisuke Gotoh, Kentaro Mizuno, Norikazu Ohta
  • Patent number: 7582489
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: September 1, 2009
    Assignee: DENSO CORPORATION
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Patent number: 7560998
    Abstract: 1st to nth pairs of transistors (n=an odd number) are connected in parallel, and each pair of transistors has an upper transistor and a lower transistor connected in series. A point between the upper transistor and the lower transistor of a preceding pair of transistors is connected to a gate of the lower transistor of a subsequent transistor, and the point between the upper transistor and the lower transistor of nth pair of transistors is connected to the gate of the first lower transistor. A capacitor is inserted between the lower transistor and a direct power source. A current regulating circuit connected to gates of the upper transistors, wherein the current regulating circuit supplies a gate voltage to each gate of the each upper transistor.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: July 14, 2009
    Assignees: Kabushiki Kaisha Toyoto Chuo Kenkyusho, Denso Corporation
    Inventors: Norikazu Ohta, Yoshie Ohira, Yasuaki Makino, Hiromi Ariyoshi
  • Publication number: 20090002033
    Abstract: The present invention reliably removes a signal change associated with a noise component from a comparison signal of a comparator. A comparator circuit includes a comparator and a timer circuit. After a reversal of the comparison signal, if the level of the comparator is sustained at least from a first time to a second time, an output signal is reversed and output. The timer circuit includes a memory unit that is shifted to a memory state in which the reversal of the comparison signal is stored at the first time if the reversal is verified. If the comparison signal is reversed during the interval between the first time and second time, the memory state is cleared.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Applicant: DENSO CORPORATION
    Inventors: Shinji Nakatani, Nobukazu Oba, Norikazu Ohta, Hideki Hosokawa
  • Publication number: 20080211544
    Abstract: A peak voltage detector circuit detects a peak voltage of an input voltage. The input voltage is input into a first input terminal of a comparator. A counter circuit counts up a counter value in synchronization with a first clock signal, when a signal output from the comparator is in a first state. The counter circuit counts down the counter value in synchronization with a second clock signal. A digital-analog conversion circuit outputs an output voltage corresponding to the counter value, and the output voltage is input into a second input terminal of the comparator. The first clock signal has a wave period shorter than that of the second clock signal.
    Type: Application
    Filed: December 11, 2007
    Publication date: September 4, 2008
    Applicant: DENSO CORPORATION
    Inventors: Yasuaki Makino, Hiroshi Okada, Reiji Iwamoto, Nobukazu Oba, Shinji Nakatani, Norikazu Ohta, Hideki Hosokawa
  • Patent number: 7417269
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: August 26, 2008
    Assignee: DENSO CORPORATION
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Publication number: 20080145956
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Application
    Filed: February 14, 2008
    Publication date: June 19, 2008
    Applicant: DENSO CORPORATION
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Publication number: 20080048641
    Abstract: A peak voltage detector circuit detects a peak voltage of an input voltage. The input voltage is input into a first input terminal of a comparator. A counter circuit counts up a counter value in synchronization with a first clock signal, when a signal output from the comparator is in a first state. The counter circuit counts down the counter value in synchronization with a second clock signal. A digital-analog conversion circuit outputs an output voltage corresponding to the counter value, and the output voltage is input into a second input terminal of the comparator. The first clock signal has a wave period shorter than that of the second clock signal.
    Type: Application
    Filed: July 3, 2007
    Publication date: February 28, 2008
    Applicant: DENSO CORPORATION
    Inventors: Yasuaki Makino, Hiroshi Okada, Reiji Iwamoto, Norikazu Ohta, Hideki Hosokawa
  • Publication number: 20070285291
    Abstract: A binarization circuit for binarizing a pulsative analog signal includes: a first comparator circuit for reversing an output signal when the analog signal becomes smaller than a threshold voltage and when the analog signal becomes larger than a high side threshold voltage; a second comparator circuit for reversing an output signal when the analog signal becomes larger than the threshold voltage and when the analog signal becomes smaller than a low side threshold voltage; and a selector circuit for inputting the output signals from the first and second comparator circuits and for reversing an output signal when the analog signal becomes smaller than the threshold voltage and when the analog signal becomes larger than the threshold voltage.
    Type: Application
    Filed: March 13, 2007
    Publication date: December 13, 2007
    Applicant: DENSO CORPORATION
    Inventors: Yasuaki Makino, Susumu Kuroyanagi, Shinji Nakatani, Reiji Iwamoto, Hideki Hosokawa, Norikazu Ohta
  • Publication number: 20070146072
    Abstract: 1st to nth pairs of transistors (n=an odd number) are connected in parallel, and each pair of transistors has an upper transistor and a lower transistor connected in series. A point between the upper transistor and the lower transistor of a preceding pair of transistors is connected to a gate of the lower transistor of a subsequent transistor, and the point between the upper transistor and the lower transistor of nth pair of transistors is connected to the gate of the first lower transistor. A capacitor is inserted between the lower transistor and a direct power source. A current regulating circuit connected to gates of the upper transistors, wherein the current regulating circuit supplies a gate voltage to each gate of the each upper transistor.
    Type: Application
    Filed: November 27, 2006
    Publication date: June 28, 2007
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, DENSO CORPORATION
    Inventors: Norikazu Ohta, Yoshie Ohira, Yasuaki Makino, Hiromi Ariyoshi
  • Patent number: 7233136
    Abstract: A reference voltage circuit includes an operational amplifier, a first fixed resistance resistor, a second fixed resistance resistor, a third fixed resistance resistor, a first diode and a second diode. The reference voltage circuit further includes a fourth fixed resistance resistor having an end connected to a non-inverting input terminal of the operational amplifier and the other end connected to the first diode. The reference voltage circuit is characterized by a value of the resistance of the fourth resistor being less than the resistance of the first resistor and a temperature coefficient of the fourth resistor being greater than any of the temperature coefficients of the first, second and third resistors.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 19, 2007
    Assignee: Denso Corporation
    Inventors: Yasuaki Makino, Norikazu Ohta, Yoshie Ohira, Hirofumi Funabashi
  • Publication number: 20070108970
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Application
    Filed: January 9, 2007
    Publication date: May 17, 2007
    Applicant: DENSO CORPORATION
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Publication number: 20060176043
    Abstract: A reference voltage circuit includes an operational amplifier, a first fixed resistance resistor, a second fixed resistance resistor, a third fixed resistance resistor, a first diode and a second diode. The reference voltage circuit further includes a fourth fixed resistance resistor having an end connected to a non-inverting input terminal of the operational amplifier and the other end connected to the first diode. The reference voltage circuit is characterized by a value of the resistance of the fourth resistor being less than the resistance of the first resistor and a temperature coefficient of the fourth resistor being greater than any of the temperature coefficients of the first, second and third resistors.
    Type: Application
    Filed: December 20, 2005
    Publication date: August 10, 2006
    Applicant: DENSO CORPORATION
    Inventors: Yasuaki Makino, Norikazu Ohta, Yoshie Ohira, Hirofumi Funabashi
  • Patent number: 6809527
    Abstract: First and second predetermined charging voltages are applied between the movable and fixed electrodes of a capacitive type of sensor to measure first and second capacitances between the movable and fixed electrodes, respectively. The first and second electrostatic capacitances are compared to obtain a characteristic of the sensor from a result of comparison. In measuring the first and second capacitances, first and second charging voltages are generated of which magnitudes are determined in accordance with the first and second capacitances, respectively. Equalization is made between the first output voltage when the first charging voltage is applied between the movable and fixed electrodes in a predetermined normal condition of the movable electrode and the second output voltage outputted when the second charging voltage is applied between the movable and fixed electrodes in the predetermined normal condition.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: October 26, 2004
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki, Hajime Ito, Yasuaki Makino, Norikazu Ohta, Keiichi Shimaoka, Hirofumi Funahashi
  • Publication number: 20040131887
    Abstract: A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
    Type: Application
    Filed: November 21, 2003
    Publication date: July 8, 2004
    Inventors: Kenichi Ao, Yasutoshi Suzuki, Hideya Yamadera, Norikazu Ohta, Hirofumi Funahashi
  • Patent number: 6744258
    Abstract: In a capacitive sensor apparatus, a capacitive sensor includes a plurality of physical-quantity-detection capacitors each having a movable electrode and a fixed electrode. A conversion device operates for converting an output signal of the capacitive sensor into an apparatus output signal. Each of the physical-quantity-detection capacitors is selectively connected and disconnected to and from the conversion device. A determination is made as to whether or not each of the physical-quantity-detection capacitors fails in response to the sensor output signal. When it is determined that a first one of the physical-quantity-detection capacitors fails, the first one is disconnected from the conversion device and a second one of the physical-quantity-detection capacitors is connected to the conversion device.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: June 1, 2004
    Assignee: Denso Corporation
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki, Hajime Ito, Yasuaki Makino, Norikazu Ohta, Keiichi Shimaoka, Hirofumi Funabashi
  • Patent number: 6647795
    Abstract: A capacitive physical load sensor includes a substrate, which has fixed electrodes, and a diaphragm, which has movable electrodes. The diaphragm is located across a gap from the substrate, and retaining parts for the diaphragm are formed around the diaphragm. Protruding parts extend into the gap from the diaphragm or from the substrate. The protruding parts support the diaphragm at different levels of deformation to alter the characteristics of the diaphragm and extend its range.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Denso Corporation
    Inventors: Yasutoshi Suzuki, Seiichiro Ishio, Keiichi Shimaoka, Norikazu Ohta, Hirofumi Funabashi
  • Publication number: 20030011384
    Abstract: First and second predetermined charging voltages are applied between the movable and fixed electrodes of a capacitive type of sensor to measure first and second capacitances between the movable and fixed electrodes, respectively. The first and second electrostatic capacitances are compared to obtain a characteristic of the sensor from a result of comparison. In measuring the first and second capacitances, first and second charging voltages are generated of which magnitudes are determined in accordance with the first and second capacitances, respectively. Equalization is made between the first output voltage when the first charging voltage is applied between the movable and fixed electrodes in a predetermined normal condition of the movable electrode and the second output voltage outputted when the second charging voltage is applied between the movable and fixed electrodes in the predetermined normal condition.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 16, 2003
    Inventors: Seiichiro Ishio, Yasutoshi Suzuki, Hajime Ito, Yasuaki Makino, Norikazu Ohta, Keiichi Shimaoka, Hirofumi Funahashi