Patents by Inventor Norimasa Yoshimizu

Norimasa Yoshimizu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11293848
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: April 5, 2022
    Assignee: ABRAM SCIENTIFIC, INC.
    Inventors: Ramkumar Abhishek, Norimasa Yoshimizu
  • Publication number: 20180259437
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Application
    Filed: January 17, 2018
    Publication date: September 13, 2018
    Inventors: Ramkumar Abhishek, Norimasa Yoshimizu
  • Patent number: 9909968
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: March 6, 2018
    Assignee: ABRAM SCIENTIFIC, INC.
    Inventors: Ramkumar Abhishek, Norimasa Yoshimizu
  • Publication number: 20170059464
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 2, 2017
    Inventors: Ramkumar Abhishek, Norimasa Yoshimizu
  • Patent number: 9518905
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: December 13, 2016
    Assignee: Abram Scientific, Inc.
    Inventors: Ramkumar Abhishek, Norimasa Yoshimizu
  • Publication number: 20130192349
    Abstract: Disclosed herein are devices for measuring, at one or more time points, one or more properties or changes in properties of a fluid sample. The devices may comprise a chamber defining an internal volume of the device suitable for receiving and retaining the fluid sample; a plurality of layers, the plurality comprising at least a first layer below the chamber, at least a second layer above the chamber, and a substrate layer between the first and second layers, wherein: the substrate layer is linked to at least one suspended element located within the chamber; the suspended element is linked to the substrate layer by at least two compliant structures located within the chamber; and the suspended element is configured to oscillate upon application of an actuating signal to at least one electrically conductive path, which runs across at least two of the compliant structures and the suspended element. Related methods and uses are also disclosed.
    Type: Application
    Filed: January 15, 2013
    Publication date: August 1, 2013
    Inventors: Abhishek Ramkumar, Norimasa Yoshimizu
  • Patent number: 8456650
    Abstract: A wafer-scale nano-metrology system (10) for sensing position of a nanofabrication element (16) when illuminated by a patterned optical projection defining a grid or position measuring gauge includes a frequency stabilized laser emitter (12) configured to generate a laser emission at a selected frequency, where the laser emission forms a diverging beam configured to illuminate a selected area occupied by a target fabrication object (18) having a proximal surface. An optical pattern generator (14) is illuminated by laser (12) and generates a patterned optical projection grid or gauge for projection upon the target fabrication object (18). A movable tool or nanofabrication element (16) carries an optical sensor array (50), and the sensor array detect at least a portion of the optical projection grid, and, in response to that detection, generates grid position data for use in controlling the position of the tool (16).
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: June 4, 2013
    Assignee: Cornell University
    Inventors: Amit Lal, Norimasa Yoshimizu
  • Publication number: 20110249275
    Abstract: A wafer-scale nano-metrology system (10) for sensing position of a nanofabrication element (16) when illuminated by a patterned optical projection defining a grid or position measuring gauge includes a frequency stabilized laser emitter (12) configured to generate a laser emission at a selected frequency, where the laser emission forms a diverging beam configured to illuminate a selected area occupied by a target fabrication object (18) having a proximal surface. An optical pattern generator (14) is illuminated by laser (12) and generates a patterned optical projection grid or gauge for projection upon the target fabrication object (18). A movable tool or nanofabrication element (16) carries an optical sensor array (50), and the sensor array detect at least a portion of the optical projection grid, and, in response to that detection, generates grid position data for use in controlling the position of the tool (16).
    Type: Application
    Filed: September 9, 2009
    Publication date: October 13, 2011
    Inventors: Amit Lal, Norimasa Yoshimizu
  • Patent number: 7495952
    Abstract: A solid-state semiconductor device operable without loss arising from junction-to junction (e.g., source-to-drain) leakage current includes a movable MEMS switch or relay armature structure carrying at least one electrical contact corresponding to a semiconductor device junction. The switch or relay armature is movable from a first position corresponding to a first switch state to a second position corresponding to a second switch state. The semiconductor device also includes an actuation circuit configured to act on the cantilever switch, changing the switch from a first contact-conducting state to a second non-contact-conducting state by physically separating the switch's electrical contact from the semiconductor device junction, thus eliminating the conductive path for leakage current losses.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: February 24, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Amit Lal, Shankar Radhakrishnan, Norimasa Yoshimizu, Serhan Ardanuc
  • Publication number: 20070041142
    Abstract: A solid-state semiconductor device operable without loss arising from junction-to junction (e.g., source-to-drain) leakage current includes a movable MEMS switch or relay armature structure carrying at least one electrical contact corresponding to a semiconductor device junction. The switch or relay armature is movable from a first position corresponding to a first switch state to a second position corresponding to a second switch state. The semiconductor device also includes an actuation circuit configured to act on the cantilever switch, changing the switch from a first contact-conducting state to a second non-contact-conducting state by physically separating the switch's electrical contact from the semiconductor device junction, thus eliminating the conductive path for leakage current losses.
    Type: Application
    Filed: July 13, 2006
    Publication date: February 22, 2007
    Inventors: Amit Lal, Shankar Radhakrishnan, Norimasa Yoshimizu, Serhan Ardanuc