Patents by Inventor Noritaka Kimura

Noritaka Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220041241
    Abstract: A handle switch device that prevents a user from being bothered when supplying power, and enables a user to easily check a connection state of a power cord. A handle switch device 10 to be attached to a handlebar 11 of a vehicle 21 is provided with a USB port 18 for supplying power to an external device, and the USB port 18 is directed inwardly with respect to a width direction of a vehicle 21 in a state in which the handle switch device 10 is attached to the handlebar 11.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 10, 2022
    Inventors: Yusuke TOMINAGA, Yuichi SHIMIZU, Noritaka KIMURA, Naoyuki YAMATE
  • Patent number: 10619581
    Abstract: A control device of an internal-combustion engine capable of improving merchantability by promptly and appropriately securing an in-cylinder fresh air amount even when an internal-combustion engine including a boost device and an EGR device is in a transient operation state is provided. A control device 1 includes an ECU 2. The ECU 2 calculates an intake air amount GGAScyl, sets an upper-limit target fresh air amount GAIR_hisH, controls a boost operation of a boost device 7 when an operating range of an internal-combustion engine 3 is in a predetermined boost range, and controls an EGR device 5 so that exhaust gas recirculation is stopped when the intake air amount GGAScyl does not reach an upper-limit target fresh air amount GAIR_hisH and the exhaust gas recirculation is executed when the intake air amount GGAScyl reaches the upper-limit target fresh air amount GAIR_hisH in the predetermined boost range.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: April 14, 2020
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Ueno, Noritaka Kimura, Kosuke Ihara, Yuto Katori, Yosuke Yamada, Hajime Uto
  • Patent number: 10570805
    Abstract: A cooling system for a vehicle, includes a first cooling circuit including a first coolant passage and a first pump. The first pump is provided in the first coolant passage to circulate coolant in the first cooling circuit so as to cool a first device to a first temperature. A second cooling circuit includes a second coolant passage and a second pump. The second pump is provided in the second coolant passage to circulate coolant in the second cooling circuit so as to cool a second device to a second temperature. The second temperature is lower than the first temperature. The coolant introduction passage connects the first cooling circuit and a connected portion of the second cooling circuit between the second device and a second radiator and upstream of the second device to supply the coolant in the first cooling circuit to the second cooling circuit.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 25, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hajime Uto, Noritaka Kimura, Yuto Katori
  • Patent number: 10550778
    Abstract: Provided is a control device for an internal combustion engine, which can ensure a stable combustion state of the internal combustion engine even under a high-humidity environment condition, thereby improving the merchantability. The control device for the internal combustion engine includes an ECU (electronic control unit). The ECU calculates a basic target EGR amount according to an operating state of the internal combustion engine, calculates a water vapor amount in air drawn into an intake passage of the internal combustion engine, calculates an EGR conversion amount by using the water vapor amount, calculates a target EGR amount by subtracting the EGR conversion amount from the basic target EGR amount, and controls internal EGR and external EGR of the internal combustion engine by using the target EGR amount.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 4, 2020
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Ueno, Noritaka Kimura, Kosuke Ihara, Yuto Katori, Yosuke Yamada, Hajime Uto
  • Patent number: 10436154
    Abstract: In a control device of an internal-combustion engine according to the disclosure, an intake throttle valve (25) for adjusting an EGR valve differential pressure (?PEGR) is provided, an EGR valve upstream pressure (PEGR0) is estimated by using a target fresh air amount (GAIRCMD) (step 6), a target differential pressure (?PEGRCMD) is set to a smaller value as the target fresh air amount (GAIRCMD) becomes smaller (FIG. 5), and a difference between the EGR valve upstream pressure (PEGR0) and the target differential pressure (?PEGRCMD) is set as a target valve downstream pressure (P1CMD) (step 7). By using the target fresh air amount (GAIRCMD), the EGR valve upstream pressure (PEGR0), and the target valve downstream pressure (P1CMD), the target EGR valve opening degree (LEGRCMD) is set (step 23), and an EGR valve (43) is controlled based on the target EGR valve opening degree (step 24).
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: October 8, 2019
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaki Ueno, Noritaka Kimura, Kosuke Ihara, Yuto Katori, Hajime Uto, Yosuke Yamada, Masashi Hidaka
  • Patent number: 10428726
    Abstract: A control apparatus 1 for the engine includes an ECU. When the operating region of the engine is in the EGR execution region B, the ECU performs the EGR control (step 2), and performs first coolant temperature control for controlling an IC coolant temperature TWic such that the temperature of intake air passing through an intercooler exceeds a dew-point temperature (step 14). Further, in a case where the operating region of the engine is in the EGR stop region C, the ECU performs second coolant temperature control for controlling the IC coolant temperature TWic such that the temperature of intake air having passed through the intercooler exceeds the dew-point temperature, assuming that the operating region of the engine has shifted to the EGR execution region B (step 17).
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: October 1, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Hajime Uto, Yosuke Yamada, Noritaka Kimura, Takayoshi Nakamura, Kosuke Ihara, Yoshinori Matsuo
  • Patent number: 10352230
    Abstract: Out of connection passages connecting the engine cooling circuit and the intercooler cooling circuit, a coolant inflow passage is connected between downstream of a mechanical pump and also upstream of a main radiator of the engine cooling circuit, and downstream of a sub radiator and also upstream of an electric pump of the intercooler cooling circuit, and a coolant outflow passage is connected between downstream of the electric pump and also upstream of the sub radiator of the intercooler cooling circuit, and downstream of the mechanical pump and also upstream of the main radiator of the engine cooling circuit. An inter-cooling circuit valve is provided in the coolant inflow passage.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: July 16, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Noritaka Kimura, Kosuke Ihara, Yosuke Yamada, Yoshikazu Tanaka, Hajime Uto
  • Publication number: 20180334951
    Abstract: A control apparatus 1 for the engine includes an ECU. When the operating region of the engine is in the EGR execution region B, the ECU performs the EGR control (step 2), and performs first coolant temperature control for controlling an IC coolant temperature TWic such that the temperature of intake air passing through an intercooler exceeds a dew-point temperature (step 14). Further, in a case where the operating region of the engine is in the EGR stop region C, the ECU performs second coolant temperature control for controlling the IC coolant temperature TWic such that the temperature of intake air having passed through the intercooler exceeds the dew-point temperature, assuming that the operating region of the engine has shifted to the EGR execution region B (step 17).
    Type: Application
    Filed: January 8, 2016
    Publication date: November 22, 2018
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hajime Uto, Yosuke Yamada, Noritaka Kimura, Takayoshi Nakamura, Kosuke Ihara, Yoshinori Matsuo
  • Publication number: 20180328297
    Abstract: Provided is a control device for an internal combustion engine, which can ensure a stable combustion state of the internal combustion engine even under a high-humidity environment condition, thereby improving the merchantability. The control device for the internal combustion engine includes an ECU (electronic control unit). The ECU calculates a basic target EGR amount according to an operating state of the internal combustion engine, calculates a water vapor amount in air drawn into an intake passage of the internal combustion engine, calculates an EGR conversion amount by using the water vapor amount, calculates a target EGR amount by subtracting the EGR conversion amount from the basic target EGR amount, and controls internal EGR and external EGR of the internal combustion engine by using the target EGR amount.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 15, 2018
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Masaki UENO, Noritaka KIMURA, Kosuke IHARA, Yuto KATORI, Yosuke YAMADA, Hajime UTO
  • Publication number: 20180274499
    Abstract: In a control device of an internal-combustion engine according to the disclosure, an intake throttle valve (25) for adjusting an EGR valve differential pressure (?PEGR) is provided, an EGR valve upstream pressure (PEGR0) is estimated by using a target fresh air amount (GAIRCMD) (step 6), a target differential pressure (?PEGRCMD) is set to a smaller value as the target fresh air amount (GAIRCMD) becomes smaller (FIG. 5), and a difference between the EGR valve upstream pressure (PEGR0) and the target differential pressure (?PEGRCMD) is set as a target valve downstream pressure (P1CMD) (step 7). By using the target fresh air amount (GAIRCMD), the EGR valve upstream pressure (PEGR0), and the target valve downstream pressure (P1CMD), the target EGR valve opening degree (LEGRCMD) is set (step 23), and an EGR valve (43) is controlled based on the target EGR valve opening degree (step 24).
    Type: Application
    Filed: March 6, 2018
    Publication date: September 27, 2018
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Masaki UENO, Noritaka KIMURA, Kosuke IHARA, Yuto KATORI, Hajime UTO, Yosuke YAMADA, Masashi HIDAKA
  • Publication number: 20180266341
    Abstract: A control device of an internal-combustion engine capable of improving merchantability by promptly and appropriately securing an in-cylinder fresh air amount even when an internal-combustion engine including a boost device and an EGR device is in a transient operation state is provided. A control device 1 includes an ECU 2. The ECU 2 calculates an intake air amount GGAScyl, sets an upper-limit target fresh air amount GAIR_hisH, controls a boost operation of a boost device 7 when an operating range of an internal-combustion engine 3 is in a predetermined boost range, and controls an EGR device 5 so that exhaust gas recirculation is stopped when the intake air amount GGAScyl does not reach an upper-limit target fresh air amount GAIR_hisH and the exhaust gas recirculation is executed when the intake air amount GGAScyl reaches the upper-limit target fresh air amount GAIR_hisH in the predetermined boost range.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 20, 2018
    Applicant: Honda Motor Co.,Ltd.
    Inventors: Masaki UENO, Noritaka KIMURA, Kosuke IHARA, Yuto KATORI, Yosuke YAMADA, Hajime UTO
  • Publication number: 20180202410
    Abstract: A control device for an internal combustion engine includes ignition timing control circuitry, exhaust gas amount control circuitry, calculation circuitry, and retard circuitry. The exhaust gas amount control circuitry is configured to control an amount of exhaust gas recirculated to an intake passage via an exhaust gas recirculation passage. The calculation circuitry is configured to calculate an exhaust gas recirculation ratio of an exhaust gas amount in a combustion chamber to an entire gas amount in the combustion chamber. The retard circuitry is configured to retard ignition timing such that the ignition timing is on a retard side with respect to an optimum ignition timing at which the engine outputs maximum torque and such that the ignition timing is before a compression process end timing in a cylinder if the exhaust gas recirculation ratio is higher than a threshold ratio.
    Type: Application
    Filed: December 8, 2017
    Publication date: July 19, 2018
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Masaki UENO, Noritaka KIMURA, Kosuke IHARA
  • Publication number: 20180163607
    Abstract: A cooling system for a vehicle, includes a first cooling circuit including a first coolant passage and a first pump. The first pump is provided in the first coolant passage to circulate coolant in the first cooling circuit so as to cool a first device to a first temperature. A second cooling circuit includes a second coolant passage and a second pump. The second pump is provided in the second coolant passage to circulate coolant in the second cooling circuit so as to cool a second device to a second temperature. The second temperature is lower than the first temperature. The coolant introduction passage connects the first cooling circuit and a connected portion of the second cooling circuit between the second device and a second radiator and upstream of the second device to supply the coolant in the first cooling circuit to the second cooling circuit.
    Type: Application
    Filed: November 29, 2017
    Publication date: June 14, 2018
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hajime UTO, Noritaka KIMURA, Yuto KATORI
  • Publication number: 20180023457
    Abstract: Out of connection passages connecting the engine cooling circuit and the intercooler cooling circuit, a coolant inflow passage is connected between downstream of a mechanical pump and also upstream of a main radiator of the engine cooling circuit, and downstream of a sub radiator and also upstream of an electric pump of the intercooler cooling circuit, and a coolant outflow passage is connected between downstream of the electric pump and also upstream of the sub radiator of the intercooler cooling circuit, and downstream of the mechanical pump and also upstream of the main radiator of the engine cooling circuit. An inter-cooling circuit valve is provided in the coolant inflow passage.
    Type: Application
    Filed: January 7, 2016
    Publication date: January 25, 2018
    Applicant: Honda Motor Co., Ltd.
    Inventors: Noritaka KIMURA, Kosuke IHARA, Yosuke YAMADA, Yoshikazu TANAKA, Hajime UTO
  • Publication number: 20160326943
    Abstract: A cooling control apparatus for an internal combustion engine with a supercharger includes an internal combustion engine cooling circuit, an inhaled gas cooling circuit, a cooling water introducing passage, an overcooling determination device, and a temperature-decrease controller. The overcooling determination device is to determine whether the internal combustion engine is overcooled based on a decrease in temperature of cooling water in the internal combustion engine cooling circuit. The temperature-decrease controller is to control an amount of the cooling water flowing from the internal combustion engine cooling circuit to the inhaled gas cooling circuit via the cooling water introducing passage to control the decrease in the temperature of the cooling water in the internal combustion engine cooling circuit in a case where the overcooling determination device determines that the internal combustion engine is overcooled.
    Type: Application
    Filed: March 31, 2016
    Publication date: November 10, 2016
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Noritaka KIMURA, Yosuke YAMADA, Kosuke IHARA, Hajime UTO, Yoshikazu TANAKA
  • Patent number: 9341155
    Abstract: An ignition apparatus for an internal combustion engine, comprising at least one ignition plug, an actuating circuit provided with first and second coil pairs corresponding to one ignition plug for generating spark discharge in the at least one ignition plug. First and second ignition signals respectively supplied to the first and second coil pair are generated so that a first discharge period and a second discharge period partially overlap with each other during an overlap discharge period, the overlap discharge period is made equal to a set overlap period, and a start timing of the first discharge period is prior to a start timing of the second discharge period. The first and second discharge periods are time periods of electric discharges generated by the first and second coil pairs. The set overlap period is set according to the first discharge period, a temporary cut threshold value, and a discharge start current value at the start timing of the first discharge period.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: May 17, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Makoto Kurahashi, Noritaka Kimura
  • Patent number: 9322346
    Abstract: An ignition control device for an internal combustion engine, which controls the number of times of ignition operation such that it becomes neither too large nor too small, according to a flowing state of a mixture in a cylinder. In the ignition control device, a target ignition timing is used as an in-cylinder flow parameter indicative of the strength of a tumble flow generated in a cylinder. When the target ignition timing is more advanced than a predetermined reference position, it is determined that the tumble flow is strong, and multiple ignition control is executed by setting the number of times of ignition to a plurality of times, whereas when the former is more retarded than the latter, it is determined that the tumble flow is not strong, and normal ignition control is executed by setting the number of times of ignition to only once.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 26, 2016
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Noritaka Kimura, Kosuke Ihara
  • Publication number: 20150192100
    Abstract: An ignition apparatus for an internal combustion engine, comprising at least one ignition plug, an actuating circuit provided with first and second coil pairs corresponding to one ignition plug for generating spark discharge in the at least one ignition plug. First and second ignition signals respectively supplied to the first and second coil pair are generated so that a first discharge period and a second discharge period partially overlap with each other during an overlap discharge period, the overlap discharge period is made equal to a set overlap period, and a start timing of the first discharge period is prior to a start timing of the second discharge period. The first and second discharge periods are time periods of electric discharges generated by the first and second coil pairs. The set overlap period is set according to the first discharge period, a temporary cut threshold value, and a discharge start current value at the start timing of the first discharge period.
    Type: Application
    Filed: December 31, 2014
    Publication date: July 9, 2015
    Inventors: Makoto KURAHASHI, Noritaka KIMURA
  • Publication number: 20140261319
    Abstract: An ignition control device for an internal combustion engine, which controls the number of times of ignition operation such that it becomes neither too large nor too small, according to a flowing state of a mixture in a cylinder. In the ignition control device, a target ignition timing is used as an in-cylinder flow parameter indicative of the strength of a tumble flow generated in a cylinder. When the target ignition timing is more advanced than a predetermined reference position, it is determined that the tumble flow is strong, and multiple ignition control is executed by setting the number of times of ignition to a plurality of times, whereas when the former is more retarded than the latter, it is determined that the tumble flow is not strong, and normal ignition control is executed by setting the number of times of ignition to only once.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Noritaka KIMURA, Kosuke IHARA
  • Patent number: 7536994
    Abstract: An air-fuel ratio of an air-fuel mixture produced by fuel injected from a first injector into an intake port (or into a combustion chamber) is set in a range of 28 to 38. Therefore, when the temperature and pressure rise with a first combustion started by spark-ignition around a spark plug to the fuel injected from a second injector into the combustion chamber, the timing of starting a second compressive hypergolic ignition is optimized to provide a stable combustion state free of knocking and misfire.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: May 26, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takuya Yamada, Teruyoshi Morita, Yoshikazu Ishitsuka, Naoaki Takeda, Atsushi Umemoto, Ken Ogawa, Noritaka Kimura, Takeo Kobayashi