Patents by Inventor Noriyuki Hayashi

Noriyuki Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180323087
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: January 4, 2017
    Publication date: November 8, 2018
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20180258984
    Abstract: A floating-bush bearing device (1) for rotatably supporting a rotational shaft (2), includes: a floating bush (3) having a cylindrical shape and including a bearing hole (33) into which the rotational shaft (2) is to be inserted; and a bearing housing (4) which rotatably houses the floating bush (3).
    Type: Application
    Filed: February 10, 2015
    Publication date: September 13, 2018
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGERS1 LTD.
    Inventors: Takaya FUTAE, Yasuaki JINNAI, Hiroshi SUZUKI, Takashi NAMBU, Noriyuki HAYASHI
  • Patent number: 10072564
    Abstract: To provide a waste-gate valve device with a good flow-rate controllability. A waste-gate valve device 1 includes: a turbine housing 3 provide with a waste-gate channel 2 through which exhaust gas bypasses a turbine; and a waste-gate valve 4 to open and close an outlet of the waste-gate channel 2. The waste-gate valve 4 includes a valve body 7 to open and close the outlet of the waste-gate channel 2, and a protrusion 8 to be housed in the waste-gate channel 2 when the valve body 7 closes the outlet of the waste-gate channel 2. The waste-gate channel 2 ensures a maximum flow rate of exhaust gas at a time when the waste-gate valve is fully open. An area ratio of a flow-path cross-sectional area A1 of the waste-gate channel 2 to a flow-path cross-sectional area A2 of a merging portion is not more than 0.2, the merging portion being a part at which exhaust gas having passed through the turbine merges.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: September 11, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Takeshi Yasoshima, Motoki Ebisu, Noriyuki Hayashi, Yukihide Nagayo, Takeshi Yoshimi
  • Patent number: 10072667
    Abstract: The present invention provides a supercharger with an electric motor having improved cooling performance for bearings, in the case of employing a grease lubrication system as a lubrication system of the bearings. A supercharger with an electric motor includes: a rotary shaft; a compressor wheel; a compressor housing for housing the compressor wheel; an electric motor including a motor rotor and a motor stator, and giving rotation force to the rotary shaft; a motor housing, for housing the electric motor; a first grease-sealed bearing for rotatably supporting the rotary shaft; and a bearing housing for housing the first grease-sealed bearing, and disposed between the compressor housing and the motor housing. Inside the bearing housing, a cooling passage through which a cooling medium flows is provided in a circumferential direction on an outer circumferential side of the first grease-sealed bearing.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: September 11, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Byeongil An, Hiroshi Suzuki, Noriyuki Hayashi, Naomichi Shibata
  • Publication number: 20180230851
    Abstract: A variable nozzle mechanism for a variable capacity turbocharger includes: a first plate having an annular shape; a second plate facing the first plate and having an annular shape, the second plate and the first plate defining an exhaust gas path in between; a plurality of nozzle vanes rotatably supported between the first plate and the second plate; and an annular member inserted on an inner circumference side of the first plate. The first plate includes a front surface facing the exhaust gas path and a back surface on an opposite side to the front surface, the annular member includes a front surface facing the exhaust gas path and a back surface on an opposite side to the front surface, and a gap is provided between the first plate and the annular member, the gap extending along a thickness direction of the first plate, from a point between an inner circumference edge of the front surface of the first plate and an outer circumference edge of the front surface of the annular member.
    Type: Application
    Filed: November 21, 2014
    Publication date: August 16, 2018
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Eigo KATOU, Keigo SAKAMOTO, Noriyuki HAYASHI, Hiroyuki ARIMIZU, Nariaki SEIKE
  • Patent number: 10006355
    Abstract: An object is to provide a variable-geometry exhaust turbine whereby it is possible to prevent deformation and damage to a nozzle support under a high temperature. A variable-geometry exhaust turbine includes: a nozzle mount, a nozzle support including a first end portion joined to the first surface of the nozzle mount, a nozzle plate including the first surface joined to the second end portion of the nozzle support 6 and supported so as to face the nozzle mount at a distance, and the opposite second surface facing an exhaust—as channel through which exhaust gas flows, and a plurality of nozzle vanes supported rotatably between the nozzle mount and the nozzle plate. The nozzle support is capable of tilting along a radial direction so as to absorb a relative displacement in the radial direction between the nozzle mount and the nozzle plate due to thermal expansion.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 26, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki Hayashi, Takamitsu Himeno, Takashi Arai, Yukihide Nagayo, Mitsuru Aiba, Takao Yokoyama, Toru Hoshi, Hiroyuki Arimizu, Toshio Sakon
  • Patent number: 9885384
    Abstract: An object is to provide a floating bush bearing device with excellent oscillation stability and small bearing loss. A floating bush bearing device which rotatably supports a rotation shaft includes: a bearing housing, a floating bush rotatably disposed between the rotation shaft and an inner circumferential surface of the bearing housing, in the bearing housing, and a bush side oil supply hole which is formed through the floating bush and is capable of supplying lubricating oil between the rotation shaft and the inner circumferential surface of the floating bush, the inner circumferential surface of the floating bush has a non-circular shape so that a gap portion is formed between the rotation shaft and the inner circumferential surface of the floating bush, the gap portion having a predetermined clearance or larger regardless of relative positions of the rotation shaft and the inner circumferential surface of the floating bush, and the bush side oil supply hole communicates with the gap portion.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: February 6, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaya Futae, Hiroshi Kanki, Noriyuki Hayashi, Hideaki Nishida, Shinji Ogawa, Chiaki Yasuda, Yutaka Ozawa
  • Patent number: 9822784
    Abstract: An object is to provide a variable-geometry exhaust turbocharger including a variable nozzle mechanism in which nozzle supports may not deform under a high-temperature condition. A variable-geometry exhaust turbocharger (1) includes: a nozzle mount (2); a nozzle support (6) having a first end coupled to a first face (2a) of the nozzle mount; a nozzle plate (4) coupled to the second end of the nozzle support and supported to be separated from the first face (2aa) of the nozzle mount, the nozzle plate having a first face (4a) coupled to the nozzle support and a second face (4b) which is opposite to the first face and which faces an exhaust gas channel (20) through which exhaust gas flows: a plurality of nozzle vanes (8) rotatably supported between the nozzle mount and the nozzle plate; and a variable nozzle mechanism (10) configured to change vane angles of the nozzle vanes to control a flow of the exhaust gas flowing between the nozzle mount and the nozzle plate.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 21, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Mitsuru Aiba, Takashi Arai, Takamitsu Himeno, Yukihide Nagayo, Noriyuki Hayashi
  • Patent number: 9793844
    Abstract: An object is to provide a permanent magnet motor controller capable of suppressing the rotary bending vibration that occurs in the permanent magnet motor effectively with simple configuration. A permanent magnet motor controller uses the dq coordinate conversion. A dq target current setting part adds the current component (i*da) that cancels the magnetic attractive force acting in the radial direction of the rotational shaft of the rotor of the permanent magnet motor to the d-axis target current value, whereby the eccentricity of the rotational shaft of the rotor is reduced.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: October 17, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yukio Yamashita, Noriyuki Hayashi
  • Patent number: 9777739
    Abstract: A rotation shaft supporting structure for an electric supercharger includes a rotation shaft that supports a compressor wheel, an electric motor including a motor rotator securely installed to the rotation shaft, and a stator for applying torque to the motor rotator. The supporting structure further includes a bearing provided on a bearing side end of the rotation shaft, which is adjacent to the compressor wheel, to support the rotation shaft, and a damper unit for absorbing shaft vibration of the rotation shaft. The compressor wheel is a wheel of a supercharging side, and the damper unit is provided at a shaft end on an opposite side to the bearing side.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: October 3, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki Hayashi, Yukio Yamashita, Byeongil An
  • Patent number: 9771662
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 26, 2017
    Assignee: OB REALTY, LLC
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20170243767
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: January 4, 2017
    Publication date: August 24, 2017
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Patent number: 9726189
    Abstract: A turbocharger and a method of manufacturing a floating bush with which noise can be reduced, and the rotation speed can be increased. In a turbocharger in which a rotating shaft having a circular cross-section and connecting a turbine rotor and a compressor rotor is supported in a freely rotatable manner, at two axially separated positions via floating bushes, by an inner circumferential surface disposed so as to surround the rotating shaft in a bearing housing, an inner circumferential surface of each of the floating bushes has a non-circular shape in which the curvature of the cross-sectional shape varies in the circumferential direction.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: August 8, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hideaki Nishida, Keitaro Kamata, Isao Tomita, Takashi Shiraishi, Noriyuki Hayashi, Motoki Ebisu, Hiroshi Suzuki, Hiroshi Ogita
  • Publication number: 20170138811
    Abstract: This vibration measurement device is configured to measure the balancing vibration of the cartridge, a kind of rotating machines, who has a rotor and a cartridge body to support the rotor rotatably for variable operating speed, and is provided with a rigidly fixed support structure, acceleration sensors which detect the vibration of the cartridge, and a flat spring which elastically supports the cartridge with respect to the support structure and has a variable spring constant of elastic support.
    Type: Application
    Filed: June 27, 2014
    Publication date: May 18, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Tomoaki INOUE, Katsuya YAMASHITA, Rimpei KAWASHITA, Hiroshi NAKAGAWA, Nariaki SEIKE, Noriyuki HAYASHI, Hideo MORI
  • Publication number: 20170030261
    Abstract: To provide a waste-gate valve device with a good flow-rate controllability. A waste-gate valve device 1 includes: a turbine housing 3 provide with a waste-gate channel 2 through which exhaust gas bypasses a turbine; and a waste-gate valve 4 to open and close an outlet of the waste-gate channel 2. The waste-gate valve 4 includes a valve body 7 to open and close the outlet of the waste-gate channel 2, and a protrusion 8 to be housed in the waste-gate channel 2 when the valve body 7 closes the outlet of the waste-gate channel 2. The waste-gate channel 2 ensures a maximum flow rate of exhaust gas at a time when the waste-gate valve is fully open. An area ratio of a flow-path cross-sectional area A1 of the waste-gate channel 2 to a flow-path cross-sectional area A2 of a merging portion is not more than 0.2, the merging portion being a part at which exhaust gas having passed through the turbine merges.
    Type: Application
    Filed: December 25, 2013
    Publication date: February 2, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takeshi YASOSHIMA, Motoki EBISU, Noriyuki HAYASHI, Yukihide NAGAYO, Takeshi YOSHIMI
  • Publication number: 20170009780
    Abstract: An object is to provide a centrifugal compressor in which an axial force applied from a shrink-fit impeller to a sleeve section is ensured even if the sleeve section is separated from a clamp surface in an axial direction of an attachment hole, as well as a turbocharger provided with the centrifugal compressor and a method of producing the centrifugal compressor. An inner peripheral surface of an attachment hole formed on a hub includes a clamp surface and a diameter-widening surface, and an outer peripheral surface of a sleeve section includes a diameter-reducing surface.
    Type: Application
    Filed: February 26, 2014
    Publication date: January 12, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Seigi Yano, Noriyuki Hayashi
  • Publication number: 20170009810
    Abstract: An object is to provide a floating bush bearing device including a circumferential groove over the entire circumference of an outer peripheral surface of a floating bush while ensuring that a pressing force is applied by lubricant oil to the floating bush to reduce oscillation, as well as a turbocharger provided with the bearing device.
    Type: Application
    Filed: February 27, 2014
    Publication date: January 12, 2017
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaya FUTAE, Tadasuke NISHIOKA, Takashi NAMBU, Noriyuki HAYASHI, Hiroshi SUZUKI
  • Publication number: 20160356283
    Abstract: An object is to provide a seal structure capable of reducing abrasion of a seal ring without increasing the number of components and of minimizing generation of abrasion powder. A seal structure to seal clearance between an outer peripheral surface 8a of a rotary shaft 8 and an inner peripheral surface 6a of a bearing housing 6 includes: a first seal groove 22A formed on the outer peripheral surface 8a of the rotary shaft 8; a second seal groove 22B disposed between the first seal groove and the impeller; a first seal ring 26 to be mounted to the first seal groove; and a second seal ring 28 to be mounted to the second seal groove.
    Type: Application
    Filed: February 25, 2014
    Publication date: December 8, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Takaya FUTAE, Hiroshi SUZUKI, Noriyuki HAYASHI, Takuya MIYAZAWA
  • Patent number: 9506399
    Abstract: An object is to provide an electric supercharging device that has a high degree of freedom in layout and can suppress the generation of heat from an electric motor. The electric supercharging device 1 includes an electric motor 2, a compressor 3 that supercharges intake air for a vehicle engine, a hydraulic accelerator 10 that accelerates the rotation of the electric motor 2 and transmits the rotation to the compressor 3, and rotation speed adjustment controller 4 that controls the rotation speed of the electric motor 2 and an acceleration ratio of the hydraulic accelerator 10 and adjusts the rotation speed of the compressor 3.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: November 29, 2016
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Noriyuki Hayashi, Motoki Ebisu
  • Publication number: 20160273545
    Abstract: An object is to provide a rotational body in which a gap is not formed between a rotational shaft and an impeller even during rotation at high speed in the interference fit portion between the rotational shaft and the impeller, and in which misalignment between the center positions of the rotational shaft and the impeller does not arise, and a manufacturing method thereof. A rotational body 1 includes a rotational shaft 2, an impeller 3, and a nut 6. The impeller includes a hub portion 4 having a peripheral surface 4s inclined to the axial direction of the rotational shaft and having an insert hole 4h in which the rotational shaft is inserted, and a blade portion 5. At least one of the rotational shaft or the insert hole of the hub portion has an interference fit portion 10 for fit between the rotational shaft and the impeller, where the outside diameter of the rotational shaft is larger than the inside diameter of the insert hole of the hub portion.
    Type: Application
    Filed: December 11, 2013
    Publication date: September 22, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Noriyuki HAYASHI, Makoto OZAKI, Nariaki SEIKE, Hiroshi KANKI, Hiroshi SUZUKI