Patents by Inventor Norman F. Krasner

Norman F. Krasner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230258824
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Application
    Filed: March 30, 2023
    Publication date: August 17, 2023
    Applicant: NextNav, LLC
    Inventors: Arun RAGHUPATHY, Norman F. KRASNER
  • Patent number: 11650330
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: May 16, 2023
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Publication number: 20210255338
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 19, 2021
    Applicant: NextNav, LLC
    Inventors: Arun RAGHUPATHY, Norman F. KRASNER
  • Patent number: 11047991
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: June 29, 2021
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Patent number: 10823856
    Abstract: A position location system comprises transmitters that broadcast positioning signals. Each broadcasted positioning signal comprises a pseudorandom ranging signal. The position location system includes a remote receiver that acquires and measures the time of arrival of the positioning signals received at the remote receiver. During an interval of time, at least two positioning signals are transmitted concurrently by the transmitters and received concurrently at the remote receiver. The two positioning signals have carrier frequencies offset from one another by an offset that is less than approximately twenty-five percent of the bandwidth of each positioning signal of the two positioning signals. Cross-interference between the positioning signals is reduced by tuning the remote receiver to a frequency of a selected signal of the two positioning signals and correlating the selected signal with a reference pseudorandom ranging signal matched to a transmitted pseudorandom ranging signal of the selected signal.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: November 3, 2020
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Publication number: 20200107290
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 2, 2020
    Inventors: ARUN RAGHUPATHY, NORMAN F. KRASNER
  • Patent number: 10598758
    Abstract: Devices, systems, and methods for sending positional information from transmitters/beacons. In one implementation a transmitter generates a range block including a ranging signal and a hybrid block including positioning data, and sends the range block and hybrid block at different times. A user device may receive signals from a plurality of transmitters and generates position/location information using trilateration and measured altitude information in comparison with transmitter altitude information.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: March 24, 2020
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Andrew Sendonaris, Norman F. Krasner
  • Patent number: 10542516
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 21, 2020
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Patent number: 10444369
    Abstract: Generating signals from non-GNSS transmitters, and processing the signals using a GNSS positioning module. Systems and methods identify a chipping rate, identify a PN code length, generate a PN code that has a length equal to the identified PN code length, generate a positioning signal using the identified chipping rate and the generated PN code, and transmit the positioning signal from the transmitter. The PN code length may produce, at the identified chipping rate, a PN code duration that is equal to or is a multiple of a PN code duration used in a GNSS system, the identified chipping rate may be equal to or a multiple of a chipping rate used in a GNSS system, and the identified PN code length may be equal to or a multiple of a PN code length used in a GNSS system.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 15, 2019
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Chen Meng, Norman F. Krasner, Sameet Deshpande
  • Patent number: 10203397
    Abstract: Devices, systems, and methods for improving performance in positioning systems. Performance may be improved using disclosed signal processing methods for separating eigenvalues corresponding to noise and eigenvalues corresponding to one or more direct path signal components or multipath signal components.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 12, 2019
    Assignee: NextNav, LLC
    Inventors: Andrew Sendonaris, Norman F. Krasner, Jagadish Venkataraman, Chen Meng
  • Publication number: 20180292538
    Abstract: A position location system comprises transmitters that broadcast positioning signals. Each broadcasted positioning signal comprises a pseudorandom ranging signal. The position location system includes a remote receiver that acquires and measures the time of arrival of the positioning signals received at the remote receiver. During an interval of time, at least two positioning signals are transmitted concurrently by the transmitters and received concurrently at the remote receiver. The two positioning signals have carrier frequencies offset from one another by an offset that is less than approximately twenty-five percent of the bandwidth of each positioning signal of the two positioning signals. Cross-interference between the positioning signals is reduced by tuning the remote receiver to a frequency of a selected signal of the two positioning signals and correlating the selected signal with a reference pseudorandom ranging signal matched to a transmitted pseudorandom ranging signal of the selected signal.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 11, 2018
    Inventors: Arun RAGHUPATHY, Norman F. KRASNER
  • Patent number: 10024972
    Abstract: A position location system comprises transmitters that broadcast positioning signals. Each broadcasted positioning signal comprises a pseudorandom ranging signal. The position location system includes a remote receiver that acquires and measures the time of arrival of the positioning signals received at the remote receiver. During an interval of time, at least two positioning signals are transmitted concurrently by the transmitters and received concurrently at the remote receiver. The two positioning signals have carrier frequencies offset from one another by an offset that is less than approximately twenty-five percent of the bandwidth of each positioning signal of the two positioning signals. Cross-interference between the positioning signals is reduced by tuning the remote receiver to a frequency of a selected signal of the two positioning signals and correlating the selected signal with a reference pseudorandom ranging signal matched to a transmitted pseudorandom ranging signal of the selected signal.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: July 17, 2018
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Patent number: 9971018
    Abstract: An interference removal filter that includes a combination of a first filter and a second filter, where the first filter passes signals over a frequency range of size B with a variation of less than +/?3 dB, where the peak value of the impulse response of the second filter is displaced in time from the peak value of the impulse response of the first filter by at least 2/B time units, and where the combination of the first filter and the second filter produces a notch in frequency at a frequency location within the frequency range.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: May 15, 2018
    Assignee: NextNav, LLC
    Inventor: Norman F. Krasner
  • Patent number: 9973234
    Abstract: Systems and methods for improving performance in terrestrial and satellite positioning systems. Signal processing systems and methods are described for selecting, from among a set of codes, certain codes having desired autocorrelation and/or cross-correlation properties. Systems and methods for generating, encoding, transmitting, and receiving signals using the selected codes are also described.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: May 15, 2018
    Assignee: NextNav, LLC
    Inventors: Norman F. Krasner, Arun Raghupathy, Bhaskar Nallapureddy
  • Patent number: 9964647
    Abstract: Described are systems and methods for estimating a position of receiver using ranging signals from different regions in a network of transmitters. In some embodiments, each ranging signal that exceeds a quality criterion is assigned to one of several defined regions based on a characteristic of that ranging signal. A maximum number of ranging signals per region may be selected and used during trilateration.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 8, 2018
    Assignee: NextNav, LLC
    Inventors: Andrew Sendonaris, Norman F. Krasner
  • Publication number: 20180003794
    Abstract: Devices, systems, and methods for sending positional information from transmitters/beacons. In one implementation a transmitter generates a range block including a ranging signal and a hybrid block including positioning data, and sends the range block and hybrid block at different times. A user device may receive signals from a plurality of transmitters and generates position/location information using trilateration and measured altitude information in comparison with transmitter altitude information.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: ARUN RAGHUPATHY, ANDREW SENDONARIS, NORMAN F. KRASNER
  • Publication number: 20180007655
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: ARUN RAGHUPATHY, NORMAN F. KRASNER
  • Patent number: 9801153
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Grant
    Filed: November 29, 2014
    Date of Patent: October 24, 2017
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Patent number: 9797982
    Abstract: Devices, systems, and methods for sending positional information from transmitters/beacons. In one implementation a transmitter generates a range block including a ranging signal and a hybrid block including positioning data, and sends the range block and hybrid block at different times. A user device may receive signals from a plurality of transmitters and generates position/location information using trilateration and measured altitude information in comparison with transmitter altitude information.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: October 24, 2017
    Assignee: NextNav, LLC
    Inventors: Andrew Sendonaris, Arun Raghupathy, Norman F. Krasner
  • Publication number: 20170299692
    Abstract: An interference removal filter that includes a combination of a first filter and a second filter, where the first filter passes signals over a frequency range of size B with a variation of less than +/?3 dB, where the peak value of the impulse response of the second filter is displaced in time from the peak value of the impulse response of the first filter by at least 2/B time units, and where the combination of the first filter and the second filter produces a notch in frequency at a frequency location within the frequency range.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventor: NORMAN F. KRASNER