Patents by Inventor Ofer Limon

Ofer Limon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190011610
    Abstract: An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 10, 2019
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Patent number: 10175392
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: January 8, 2019
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh, Shai Ben-Yaish, Ofer Limon, Oren Yehezkel, Karen Lahav
  • Patent number: 10078159
    Abstract: An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: September 18, 2018
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Patent number: 10031334
    Abstract: A phase-adjusting element configured to provide substantially liquid-invariant extended depth of field for an associated optical lens. One example of a lens incorporating the phase-adjusting element includes the lens having surface with a modulated relief defining a plurality of regions including a first region and a second region, the first region having a depth relative to the second region, and a plurality of nanostructures formed in the first region. The depth of the first region and a spacing between adjacent nanostructures of the plurality of nanostructures is selected to provide a selected average index of refraction of the first region, and the spacing between adjacent nanostructures of the plurality of nanostructures is sufficiently small that the first region does not substantially diffract visible light.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 24, 2018
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Ofer Limon
  • Publication number: 20180140186
    Abstract: Some demonstrative embodiments include apparatuses, systems and/or methods of determining a pupillary distance. For example, a product may include one or more tangible computer-readable non-transitory storage media including computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement operations of measuring a pupillary distance between pupils of a user. The operations may include receiving a captured image comprising first and second reflections of a light of a light source, the first reflection comprising a reflection of the light from a first pupil of the user, and the second reflection comprising a reflection of the light from a second pupil of the user; and determining the pupillary distance based on locations of the first and second reflections in the captured image and an estimated distance between an image capturing device and pupils of the user, when the image is captured.
    Type: Application
    Filed: May 10, 2016
    Publication date: May 24, 2018
    Inventor: Ofer Limon
  • Publication number: 20180140182
    Abstract: Some demonstrative embodiments include apparatuses, systems and/or methods of determining one or more optical parameters of a lens of eyeglasses. For example, a product may include one or more tangible computer-readable non-transitory storage media including computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement operations of determining one or more optical parameters of a lens of eyeglasses. The operations may include processing at least one image of an object captured via the lens; and determining the one or more optical parameters of the lens based on the at least one image.
    Type: Application
    Filed: May 10, 2016
    Publication date: May 24, 2018
    Inventors: Ofer Limon, Haim Bachar, Nir Altmark, Shahar Levy
  • Publication number: 20180106700
    Abstract: Some demonstrative embodiments include apparatuses, systems and/or methods of determining one or more optical parameters of a lens of eyeglasses. For example, a product may include one or more tangible computer-readable non-transitory storage media including computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to implement operations of determining one or more optical parameters of a lens of eyeglasses. The operations may include processing at least one image of an object captured via the lens; and determining the one or more optical parameters of the lens based on the at least one image.
    Type: Application
    Filed: May 10, 2016
    Publication date: April 19, 2018
    Inventors: Ofer Limon, Haim Bachar, Nir Altmark, Shahar Levy
  • Publication number: 20170079523
    Abstract: The method include: (a) displaying at least one dynamic target image of at least one sign over a display area; (b) receiving subjective feedback from the subject indicating that the subject is positioned at a maximum distance of best acuity (MDBA) from the target image, wherein the MDBA is the maximum distance in which the subject recognizes the sign; (c) measuring one or more parameter associated with distance, during the time the subject has reached the MDBA distance, using at least one sensor; (d) estimating the MDBA by estimating the distance between the eye of the subject and the display area in which the target image is displayed by using the sensor data and (e) calculating the refractive error of the eye according to the estimated MDBA and characteristics of the target image.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventor: Ofer Limon
  • Publication number: 20170038503
    Abstract: An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.
    Type: Application
    Filed: January 4, 2016
    Publication date: February 9, 2017
    Inventors: Zeev ZALEVSKY, Alex ZLOTNIK, Shai BEN-YAISH, Ofer LIMON, Ido RAVEH
  • Patent number: 9549669
    Abstract: The method include: (a) displaying at least one dynamic target image of at least one sign over a display area; (b) receiving subjective feedback from the subject indicating that the subject is positioned at a maximum distance of best acuity (MDBA) from the target image, wherein the MDBA is the maximum distance in which the subject recognizes the sign; (c) measuring one or more parameter associated with distance, during the time the subject has reached the MDBA distance, using at least one sensor; (d) estimating the MDBA by estimating the distance between the eye of the subject and the display area in which the target image is displayed by using the sensor data and (e) calculating the refractive error of the eye according to the estimated MDBA and characteristics of the target image.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: January 24, 2017
    Assignee: 6 OVER 6 VISION LTD.
    Inventor: Ofer Limon
  • Patent number: 9500875
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: November 22, 2016
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20160120402
    Abstract: The method include: (a) displaying at least one dynamic target image of at least one sign over a display area; (b) receiving subjective feedback from the subject indicating that the subject is positioned at a maximum distance of best acuity (MDBA) from the target image, wherein the MDBA is the maximum distance in which the subject recognizes the sign; (c) measuring one or more parameter associated with distance, during the time the subject has reached the MDBA distance, using at least one sensor; (d) estimating the MDBA by estimating the distance between the eye of the subject and the display area in which the target image is displayed by using the sensor data and (e) calculating the refractive error of the eye according to the estimated MDBA and characteristics of the target image.
    Type: Application
    Filed: June 5, 2014
    Publication date: May 5, 2016
    Inventor: Ofer Limon
  • Patent number: 9239471
    Abstract: An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 19, 2016
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20150370066
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh, Shai Ben-Yaish, Ofer Limon, Oren Yehezkel, Karen Lahav
  • Publication number: 20150286067
    Abstract: A method is provided for use in reducing a size of halo effect in an ophthalmic lens. The method comprises: providing data indicative of a given ophthalmic lens with a first pattern providing prescribed vision improvement, processing said data indicative of the features of the first pattern and generating data indicative of a variation of at least one feature of the first pattern resulting in a second pattern which maintains said prescribed vision improvement and reduces a size of halo effect as compared to that of the lens with the first pattern.
    Type: Application
    Filed: December 20, 2012
    Publication date: October 8, 2015
    Inventors: Ofer Limon, Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish
  • Patent number: 9134543
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: September 15, 2015
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh, Shai Ben-Yaish, Ofer Limon, Oren Yehezkel, Karen Lahav
  • Publication number: 20150198819
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 16, 2015
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Patent number: 8955968
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 17, 2015
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Publication number: 20140022508
    Abstract: An ophthalmic lens is presented. The lens includes a toric optical zone and a phase-affecting, non-diffractive optical element for extending depth of focus of imaging.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 23, 2014
    Applicant: XCEED IMAGING LTD.
    Inventors: Shai Ben-Yaish, Alex Zlotink, Ido Raveh, Ofer Limon, Oren Yehezkel, Karen Lahav-Yacouel, Michael Goldstein, Zeev Zalevsky
  • Publication number: 20130050473
    Abstract: A phase-adjusting element configured to provide substantially liquid-invariant extended depth of field for an associated optical lens. One example of a lens incorporating the phase-adjusting element includes the lens having surface with a modulated relief defining a plurality of regions including a first region and a second region, the first region having a depth relative to the second region, and a plurality of nanostructures formed in the first region. The depth of the first region and a spacing between adjacent nanostructures of the plurality of nanostructures is selected to provide a selected average index of refraction of the first region, and the spacing between adjacent nanostructures of the plurality of nanostructures is sufficiently small that the first region does not substantially diffract visible light.
    Type: Application
    Filed: February 9, 2011
    Publication date: February 28, 2013
    Applicant: XCEED IMAGING LTD.
    Inventors: Zeev Zalevsky, Ofer Limon