Patents by Inventor Oguz H. Dagci

Oguz H. Dagci has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8725385
    Abstract: A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses an indirect integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the indirect integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Hossein Javaherian, Ibrahim Haskara, Oguz H. Dagci
  • Patent number: 8700287
    Abstract: A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses a cubic spline integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the cubic spline integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Hossein Javaherian, Ibrahim Haskara, Oguz H. Dagci
  • Patent number: 8437945
    Abstract: A method for adjusting fuel injection timing in an internal combustion engine including a cylinder and configured to operate multiple fuel injections in the cylinder per combustion cycle includes monitoring in-cylinder pressure through a first combustion cycle, determining actual combustion phasing metrics based upon the in-cylinder pressure, monitoring a baseline fuel injection timing comprising a first injection timing and a second injection timing, providing expected combustion phasing metrics based upon the baseline fuel injection timing, comparing the actual combustion phasing metrics to the expected combustion phasing metrics, and adjusting the baseline fuel injection timing in a second combustion cycle based upon the comparing.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: May 7, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Publication number: 20120191325
    Abstract: A method for correcting main fuel injection quantities in an internal combustion engine in a plurality of cylinders of the engine includes monitoring a desired fuel injection quantity for the plurality of cylinders, monitoring an in-cylinder pressure for each of the cylinders, determining a burnt fuel mass resulting from a main fuel injection for each of the cylinders based upon the in-cylinder pressures, determining a fuel injection quantity correction for each of the cylinders based upon the burnt fuel masses, and controlling fuel injections into the plurality of cylinders based upon the desired fuel injection quantity and the fuel injection quantity correction for each of the cylinders.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 26, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Patent number: 8195379
    Abstract: A method for adjusting fuel injection quantities in an internal combustion engine configured to operate multi-pulse fuel injections in a cylinder of the engine includes monitoring in-cylinder pressure, determining a burnt fuel mass for main combustion based upon the in-cylinder pressure, determining a burnt fuel mass for post combustion based upon the in-cylinder pressure, determining a main fuel quantity offset based upon the burnt fuel mass for main combustion, determining a post fuel quantity offset based upon the burnt fuel mass for post combustion, and controlling fuel injections into the cylinder based upon the main fuel quantity offset and the post fuel quantity offset.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 5, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Publication number: 20110276255
    Abstract: A method for adjusting fuel injection timing in an internal combustion engine including a cylinder and configured to operate multiple fuel injections in the cylinder per combustion cycle includes monitoring in-cylinder pressure through a first combustion cycle, determining actual combustion phasing metrics based upon the in-cylinder pressure, monitoring a baseline fuel injection timing comprising a first injection timing and a second injection timing, providing expected combustion phasing metrics based upon the baseline fuel injection timing, comparing the actual combustion phasing metrics to the expected combustion phasing metrics, and adjusting the baseline fuel injection timing in a second combustion cycle based upon the comparing.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Publication number: 20110208404
    Abstract: A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses a cubic spline integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the cubic spline integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Hossein Javaherian, Ibrahim Haskara, Oguz H. Dagci
  • Publication number: 20110208407
    Abstract: A method for computing indicated mean effective pressure (IMEP) in an internal combustion engine using sparse input data. The method uses an indirect integration approach, and requires significantly lower resolution crankshaft position and cylinder pressure input data than existing IMEP computation methods, while providing calculated IMEP output results which are very accurate in comparison to values computed by existing methods. By using sparse input data, the indirect integration method offers cost reduction opportunities for a manufacturer of vehicles, engines, and/or electronic control units, through the use of lower cost sensors and the consumption of less computing resources for data processing and storage.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Hossein Javaherian, Ibrahim Haskara, Oguz H. Dagci
  • Publication number: 20110172899
    Abstract: A method for adjusting fuel injection quantities in an internal combustion engine configured to operate multi-pulse fuel injections in a cylinder of the engine includes monitoring in-cylinder pressure, determining a burnt fuel mass for main combustion based upon the in-cylinder pressure, determining a burnt fuel mass for post combustion based upon the in-cylinder pressure, determining a main fuel quantity offset based upon the burnt fuel mass for main combustion, determining a post fuel quantity offset based upon the burnt fuel mass for post combustion, and controlling fuel injections into the cylinder based upon the main fuel quantity offset and the post fuel quantity offset.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Ibrahim Haskara, Yue-Yun Wang, Chol-Bum M. Kweon, Frederic Anton Matekunas, Oguz H. Dagci
  • Patent number: 7822529
    Abstract: Operation of an internal combustion engine selectively operative in a controlled auto-ignition combustion mode is monitored. The engine is equipped with a pressure sensing device operative to monitor in-cylinder pressure. An analog signal output from the pressure sensing device is monitored during a combustion cycle. A peak cylinder pressure and a corresponding crank angle are detected and captured during the combustion cycle. A state for a combustion parameter for the cylinder for the combustion cycle is determined based upon the peak cylinder pressure and the corresponding crank angle.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: October 26, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Oguz H. Dagci, Alan W. Brown, Jun-Mo Kang
  • Patent number: 7735478
    Abstract: A system and method for determining mass fraction burned in an internal combustion engine includes a plurality of engine sensors and a control module determining a ratio of specific heat from a combination of one or more from the group of exhaust gas temperature, injected fuel quantity, air quantity inside a cylinder, mass air flow, air fuel ratio, manifold pressure and a residual gas amount determined from the plurality of engine sensors. The control module includes a mass fraction burned module determining a mass fraction burned in response to a cylinder volume, and the ratio of specific heat. The control module controls an engine parameter based on mass fraction burned.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: June 15, 2010
    Inventors: Oguz H. Dagci, Kenneth J. Buslepp
  • Patent number: 7737838
    Abstract: There is provided a method and system for communicating a signal output from a wireless sensor to a processor on a mobile platform upon interruption of wireless communications with the processor. The wireless sensor is signally connected to a local processor operative to wirelessly communicate with the processor. A second sensor is signally connected to first and second inputs of the processor via an electrical cable. The local processor is operative to selectively interrupt signal transmission from the second sensor to the processor effective to identify the wireless sensor and effective to communicate the wireless sensor signal via the second input of the processor.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: June 15, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Oguz H. Dagci
  • Publication number: 20100126482
    Abstract: A system and method for determining mass fraction burned in an internal combustion engine includes a plurality of engine sensors and a control module determining a ratio of specific heat from a combination of one or more from the group of exhaust gas temperature, injected fuel quantity, air quantity inside a cylinder, mass air flow, air fuel ratio, manifold pressure and a residual gas amount determined from the plurality of engine sensors. The control module includes a mass fraction burned module determining a mass fraction burned in response to a cylinder volume, and the ratio of specific heat. The control module controls an engine parameter based on mass fraction burned.
    Type: Application
    Filed: November 24, 2008
    Publication date: May 27, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Oguz H. Dagci, Kenneth J. Buslepp
  • Patent number: 7689343
    Abstract: There is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: March 30, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Oguz H. Dagci, Jun-Mo Kang
  • Patent number: 7598851
    Abstract: A method and apparatus to wirelessly transmit information within a mobile platform is provided, comprising a local processor, signally connected to a plurality of sensing devices and operative to process input signals from the sensing devices. There is a control module and a wireless communication system, operative to selectively transmit information between the local processor and the control module. Selectively transmitting information comprises assigning a communications priority to each input signal, the communications priority comprising one of a non-event, a first-level event, a second-level event, and a third-level event; and, transmitting the input signals to the control module based upon the communications priority.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: October 6, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Oguz H. Dagci
  • Patent number: 7589643
    Abstract: A method for monitoring vehicle speed is provided. The method includes receiving a current speed of a vehicle and a current speed limit associated with a current location of the vehicle. A current speed range is calculated by comparing the current speed of the vehicle to the current speed limit. Operator alert preferences including a caution range and a warning range are accessed. An alert responsive to the current speed range and to the operator alert preferences is communicated to the operator of the vehicle. The alert includes one or more caution attributes when the current speed range of the vehicle is within the caution range. The alert includes one or more warning attributes when the current speed range of the vehicle is within the warning range. The alert includes one or more at speed attributes when the current speed range of the vehicle is not within the caution range or the warning range.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 15, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Oguz H. Dagci, Donald K. Grimm, Varsha Sadekar, Daniel J. Bartz, Sarmad Y. Hermiz, William E. Hamilton
  • Publication number: 20090109022
    Abstract: A method for providing in-vehicle fuel-related information is disclosed. A geographic location of a vehicle is determined. A driving distance remaining for the vehicle is estimated based on a current fuel level and a fuel consumption rate of the vehicle. Fuel providers are located within a search area of the driving distance remaining for the vehicle, and one or more of the fuel providers are output. A travel cost for the vehicle may also be calculated.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 30, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Anupam Gangopadhyay, Man-Feng Chang, Chen-Fang Chang, Oguz H. Dagci
  • Publication number: 20080264360
    Abstract: There is provided a method and a control scheme to control an internal combustion engine operating in an auto-ignition mode by selectively activating a control scheme for controlling fuel injector operation based upon engine combustion parameters, e.g., IMEP or NMEP. The method comprises operating the engine in the auto-ignition combustion mode, and monitoring combustion in each of the cylinders. The fuel correction is selectively enabled only when either one of a partial burn and a misfire of a cylinder charge in one of the cylinders has been detected.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 30, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Oguz H. Dagci, Jun-Mo Kang
  • Publication number: 20080221774
    Abstract: Operation of an internal combustion engine selectively operative in a controlled auto-ignition combustion mode is monitored. The engine is equipped with a pressure sensing device operative to monitor in-cylinder pressure. An analog signal output from the pressure sensing device is monitored during a combustion cycle. A peak cylinder pressure and a corresponding crank angle are detected and captured during the combustion cycle. A state for a combustion parameter for the cylinder for the combustion cycle is determined based upon the peak cylinder pressure and the corresponding crank angle.
    Type: Application
    Filed: March 5, 2008
    Publication date: September 11, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Oguz H. Dagci, Alan W. Brown, Jun-Mo Kang