Patents by Inventor Ohad Bachar

Ohad Bachar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093985
    Abstract: Systems and methods for acquiring measurements of structures of a bonded sample are disclosed. Such systems and methods may include determining a first registration measurement of a first registration structure and a first interface target structure of a first sample, and a second registration measurement of a second sample prior to coupling the samples together. Such systems and methods may include, after such a coupling of the samples, determining a third registration measurement of the coupled sample at least partially by measuring the first registration structure through the top face of the first sample. Such systems and methods may include acquiring an overlay measurement based on the first registration measurement, the second registration measurement, and the third registration measurement. Such systems and methods may include adjusting an inter-sample coupling recipe based on the overlay measurement, where the inter-sample coupling recipe may include a final bonding recipe.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Nimrod Shuall, Jordan Pio, Frank Laske, Stefan Eyring, Ohad Bachar
  • Patent number: 11852590
    Abstract: A metrology system may include an imaging sub-system including one or more lenses and a detector to image a sample, where the sample includes metrology target elements on two or more sample layers. The metrology system may further include a controller to determine layer-specific imaging configurations of the imaging sub-system to image the metrology target elements on the two or more sample layers within a selected image quality tolerance, where each layer-specific imaging configuration includes a selected configuration of one or more components of the imaging sub-system. The controller may further receive, from the imaging sub-system, one or more images of the metrology target elements on the two or more sample layers generated using the layer-specific imaging configurations. The controller may further provide a metrology measurement based on the one or more images of the metrology target elements on the two or more sample layers.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: December 26, 2023
    Assignee: KLA Corporation
    Inventors: Amnon Manassen, Daria Negri, Andrew V. Hill, Ohad Bachar, Vladimir Levinski, Yuri Paskover
  • Publication number: 20230324809
    Abstract: A metrology system includes an imaging system. The imaging system may include an objective lens. The metrology system may include one or more detectors. The metrology system may include an objective positioning stage structurally coupled to the objective lens and configured to adjust a focal plane of at least one of the one or more detectors via movement along an optical axis of the metrology system. The metrology system may include one or more proximity sensors configured to measure lateral positions of a stage element as the objective positioning stage moves along the optical axis. The metrology system may be configured to determine a metrology measurement associated with a target on a sample using the images and lateral positions of the stage element when implementing a metrology recipe.
    Type: Application
    Filed: April 7, 2022
    Publication date: October 12, 2023
    Inventors: Yoram Uziel, Ariel Hildesheim, Alexander Novikov, Amnon Manassen, Etay Lavert, Ohad Bachar, Yoav Grauer
  • Publication number: 20220344218
    Abstract: A system and method for generating a quality parameter value of a semiconductor device wafer (SDW), during fabrication thereof, the method including designating a plurality of measurement site sets (MSSs) on the SDW, each of the MSSs including a first measurement-orientation site (FMS) and a second measurement-orientation site (SMS), the FMS and the SMS being different measurement sites on the SDW, generating a first measurement-orientation quality parameter dataset (FMQPD) by measuring features formed within each the FMS of at least one of the MSSs in a first measurement orientation, generating a second measurement-orientation quality parameter dataset (SMQPD) by measuring features formed within each the SMS of the at least one of the MSSs in a second measurement orientation and generating at least one tool-induced-shift (TIS)-ameliorated quality parameter value (TAQPV), at least partially based on the FMQPD and the SMQPD.
    Type: Application
    Filed: September 8, 2021
    Publication date: October 27, 2022
    Inventors: Liran Yerushalmi, Daria Negri, Ohad Bachar, Yossi Simon, Amnon Manassen, Nir Ben David, Yoram Uziel, Etay Lavert
  • Patent number: 11454894
    Abstract: A method and system for measuring misregistration between different layers of a semiconductor device, the method including providing a set of pupil inaccuracy scalable basis elements (PISBEs) relating to a plurality of patterned semiconductor device wafers (PSDWs), generating a single pupil image of a site on a PSDW, the PSDW being one of the plurality of PSDWs, by taking a single measurement of the site, the single pupil image including a plurality of site-specific pixels, calculating a set of site-specific pupil inaccuracy scalable basis element scaling factors (PISBESFs) for the single pupil image using the set of PISBEs and the plurality of site-specific pixels and calculating a site-specific misregistration value (SSMV) using the set of PISBEs and the set of site-specific PISBESFs.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: September 27, 2022
    Assignee: KLA Corporation
    Inventors: Alon Yagil, Yuval Lamhot, Ohad Bachar, Martin Mayo, Tal Yaziv, Roie Volkovich
  • Patent number: 11353321
    Abstract: A metrology system is disclosed, in accordance with one or more embodiments of the present disclosure. The metrology system includes a stage configured to secure a sample, one or more diffraction-based overlay (DBO) metrology targets disposed on the sample. The metrology system includes a light source and one or more sensors. The metrology system includes a set of optics configured to direct illumination light from the light source to the one or more DBO metrology targets of the sample, the set of optics including a half-wave plate, the half-wave plate selectively insertable into an optical path such that the half-wave plate selectively passes both illumination light from an illumination channel and collection light from a collection channel, the half-wave plate being configured to selectively align an orientation of linearly polarized illumination light from the light source to an orientation of a grating of the one or more DBO metrology targets.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: June 7, 2022
    Assignee: KLA Corporation
    Inventors: Roie Volkovich, Ohad Bachar, Nadav Gutman
  • Publication number: 20220082950
    Abstract: A method and system for measuring misregistration between different layers of a semiconductor device, the method including providing a set of pupil inaccuracy scalable basis elements (PISBEs) relating to a plurality of patterned semiconductor device wafers (PSDWs), generating a single pupil image of a site on a PSDW, the PSDW being one of the plurality of PSDWs, by taking a single measurement of the site, the single pupil image including a plurality of site-specific pixels, calculating a set of site-specific pupil inaccuracy scalable basis element scaling factors (PISBESFs) for the single pupil image using the set of PISBEs and the plurality of site-specific pixels and calculating a site-specific misregistration value (SSMV) using the set of PISBEs and the set of site-specific PISBESFs.
    Type: Application
    Filed: January 28, 2021
    Publication date: March 17, 2022
    Inventors: Alon Yagil, Yuval Lamhot, Ohad Bachar, Martin Mayo, Tal Yaziv, Roie Volkovich
  • Publication number: 20210389125
    Abstract: A metrology system is disclosed, in accordance with one or more embodiments of the present disclosure. The metrology system includes a stage configured to secure a sample, one or more diffraction-based overlay (DBO) metrology targets disposed on the sample. The metrology system includes a light source and one or more sensors. The metrology system includes a set of optics configured to direct illumination light from the light source to the one or more DBO metrology targets of the sample, the set of optics including a half-wave plate, the half-wave plate selectively insertable into an optical path such that the half-wave plate selectively passes both illumination light from an illumination channel and collection light from a collection channel, the half-wave plate being configured to selectively align an orientation of linearly polarized illumination light from the light source to an orientation of a grating of the one or more DBO metrology targets.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Inventors: Roie Volkovich, Ohad Bachar, Nadav Gutman
  • Patent number: 11187838
    Abstract: A spectral filter includes a curved filtering element including a concave surface forming a portion of a sphere. The concave surface may be positioned to receive light diverging from an output face of an optical fiber located at a first location proximate to a center of the sphere corresponding to the concave surface. The concave surface may transmit a first portion of a spectrum of the light. The concave surface may further reflect and focus a second portion of the spectrum to a second location proximate to the center of the sphere. The spectral filter may further include a collector to direct the second portion of the spectrum away from the output face of the optical fiber.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: November 30, 2021
    Assignee: KLA Corporation
    Inventors: Andrew V. Hill, Ohad Bachar, Avi Abramov, Amnon Manassen
  • Patent number: 11156846
    Abstract: An illumination source may include two or more input light sources, a collector, and any combination of a beam uniformizer, a speckle reducer, or any number of output fibers to provide a selected illumination etendue. The collector may include one or more lenses to combine illumination from the two or more input light sources into an illumination beam, where the illumination from the two or more input light sources occupy different portions of an input aperture of the collector. The beam uniformizer may include a first noncircular-core fiber to receive the illumination beam, a second noncircular-core fiber, and one or more coupling lenses to relay a far-field distribution of the illumination beam from the first noncircular-core fiber to an input face of the second noncircular-core fiber to provide output light with uniform near-field and far-field distributions.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: October 26, 2021
    Assignee: KLA Corporation
    Inventors: Amnon Manassen, Andrew V. Hill, Ohad Bachar, Avi Abramov
  • Patent number: 10976562
    Abstract: A beamsplitter includes a substrate formed from a material transparent to wavelengths of light at least above a selected cutoff wavelength and reflective structures distributed across a surface of the substrate. The reflective structures split incident light having wavelengths above the selected cutoff wavelength into a reflected beam formed from portions of the incident light reflected from the reflective structures and a transmitted beam formed from portions of the incident light transmitted through the substrate. A splitting ratio of a power of the reflected beam to a power of the transmitted beam is based on a ratio of surface area of the reflective surfaces to an area of the incident light on the substrate. Separation distances between neighboring reflective structures are smaller than the cutoff wavelength such that diffracted power of the incident light having wavelengths above the selected cutoff wavelength is maintained below a selected tolerance.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: April 13, 2021
    Assignee: KLA Corporation
    Inventors: Dmitry Gorelik, Andrew V. Hill, Ohad Bachar, Amnon Manassen, Daria Negri
  • Patent number: 10831108
    Abstract: Methods are provided for deriving a partially continuous dependency of metrology metric(s) on recipe parameter(s), analyzing the derived dependency, determining a metrology recipe according to the analysis, and conducting metrology measurement(s) according to the determined recipe. The dependency may be analyzed in form of a landscape such as a sensitivity landscape in which regions of low sensitivity and/or points or contours of low or zero inaccuracy are detected, analytically, numerically or experimentally, and used to configure parameters of measurement, hardware and targets to achieve high measurement accuracy. Process variation is analyzed in terms of its effects on the sensitivity landscape, and these effects are used to characterize the process variation further, to optimize the measurements and make the metrology both more robust to inaccuracy sources and more flexible with respect to different targets on the wafer and available measurement conditions.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 10, 2020
    Assignee: KLA Corporation
    Inventors: Tal Marciano, Barak Bringoltz, Evgeni Gurevich, Ido Adam, Ze'ev Lindenfeld, Zeng Zhao, Yoel Feler, Daniel Kandel, Nadav Carmel, Amnon Manassen, Nuriel Amir, Oded Kaminsky, Tal Yaziv, Ofer Zaharan, Moshe Cooper, Roee Sulimarski, Tom Leviant, Noga Sella, Boris Efraty, Lilach Saltoun, Amir Handelman, Eltsafon Ashwal, Ohad Bachar
  • Publication number: 20200333612
    Abstract: An illumination source may include two or more input light sources, a collector, and any combination of a beam uniformizer, a speckle reducer, or any number of output fibers to provide a selected illumination etendue. The collector may include one or more lenses to combine illumination from the two or more input light sources into an illumination beam, where the illumination from the two or more input light sources occupy different portions of an input aperture of the collector. The beam uniformizer may include a first noncircular-core fiber to receive the illumination beam, a second noncircular-core fiber, and one or more coupling lenses to relay a far-field distribution of the illumination beam from the first noncircular-core fiber to an input face of the second noncircular-core fiber to provide output light with uniform near-field and far-field distributions.
    Type: Application
    Filed: June 4, 2019
    Publication date: October 22, 2020
    Inventors: Amnon Manassen, Andrew V. Hill, Ohad Bachar, Avi Abramov
  • Patent number: 10677588
    Abstract: An overlay metrology tool providing site-by-site alignment includes a controller coupled to a telecentric imaging system. The controller may receive two or more alignment images of an overlay target on a sample captured at two or more focal positions by the imaging system, generate alignment data indicative of an alignment of the overlay target within the imaging system based on the alignment images, set the alignment images as measurement images when the alignment of the overlay target is within selected alignment tolerances, direct the imaging system to adjust the alignment of the overlay target in the imaging system and further receive one or more measurement images from the imaging system when the alignment of the overlay target is outside the selected alignment tolerances, and determine overlay between two or more layers of the sample based on at least one of the measurement images.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: June 9, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Andrew V. Hill, Ohad Bachar, Avi Abramov, Yuri Paskover, Dor Perry
  • Patent number: 10533940
    Abstract: Angle-resolved reflectometers and reflectometry methods are provided, which comprise a coherent light source, an optical system arranged to scan a test pattern using a spot of coherent light from the light source to yield realizations of the light distribution in the collected pupil, wherein the spot covers a part of the test pattern and the scanning is carried out optically or mechanically according to a scanning pattern, and a processing unit arranged to generate a composite image of the collected pupil distribution by combining the pupil images. Metrology systems and methods are provided, which reduce diffraction errors by estimating, quantitatively, a functional dependency of measurement parameters on aperture sizes and deriving, from identified diffraction components of the functional dependency which relate to the aperture sizes, correction terms for the measurement parameters with respect to the measurement conditions.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 14, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Amnon Manassen, Andrew V. Hill, Daniel Kandel, Ilan Sela, Ohad Bachar, Barak Bringoltz
  • Patent number: 10444161
    Abstract: A metrology system includes an image device and a controller. The image device includes a spectrally-tunable illumination device and a detector to generate images of a sample having metrology target elements on two or more sample layers based on radiation emanating from the sample in response to illumination from the spectrally-tunable illumination device. The controller determines layer-specific imaging configurations of the imaging device to image the metrology target elements on the two or more sample layers within a selected image quality tolerance in which each layer-specific imaging configuration includes an illumination spectrum from the spectrally-tunable illumination device. The controller further receives one or more images of the metrology target elements on the two or more sample layers generated using the layer-specific imaging configurations. The controller further provides a metrology measurement based on the one or more images of the metrology target elements on the two or more sample layers.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: October 15, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Amnon Manassen, Daria Negri, Andrew V. Hill, Ohad Bachar, Vladimir Levinski, Yuri Paskover
  • Publication number: 20190310080
    Abstract: An overlay metrology tool providing site-by-site alignment includes a controller coupled to a telecentric imaging system. The controller may receive two or more alignment images of an overlay target on a sample captured at two or more focal positions by the imaging system, generate alignment data indicative of an alignment of the overlay target within the imaging system based on the alignment images, set the alignment images as measurement images when the alignment of the overlay target is within selected alignment tolerances, direct the imaging system to adjust the alignment of the overlay target in the imaging system and further receive one or more measurement images from the imaging system when the alignment of the overlay target is outside the selected alignment tolerances, and determine overlay between two or more layers of the sample based on at least one of the measurement images.
    Type: Application
    Filed: April 9, 2018
    Publication date: October 10, 2019
    Inventors: Andrew V. Hill, Ohad Bachar, Avi Abramov, Yuri Paskover, Dor Perry
  • Patent number: 10422508
    Abstract: A tunable spectral filter includes a first tunable dispersive element, a first optical element, a spatial filtering element located at the focal plane, a second optical element, and a second dispersive element. The first tunable dispersive element introduces spectral dispersion to an illumination beam with an adjustable dispersion. The first optical element focuses the illumination beam at a focal plane in which a distribution of a spectrum of the spectrally-dispersed illumination beam at the focal plane is controllable by adjusting the dispersion of the first tunable dispersive element. The spatial filtering element filters the spectrum of the illumination beam based on the distribution of the spectrum of the illumination beam at the focal plane. The second optical element collects the spectrally-dispersed illumination beam transmitted from the spatial filtering element. The second tunable dispersive element removes the dispersion introduced by the first tunable dispersive element from the illumination beam.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 24, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Andrew V. Hill, Amnon Manassen, Ohad Bachar
  • Patent number: 10371626
    Abstract: A metrology system includes an illumination source to generate an illumination beam, a multi-channel spectral filter, a focusing element to direct illumination from the single optical column to a sample, and at least one detector to capture the illumination collected from the sample. The multi-channel spectral filter includes two or more filtering channels having two or more channel beam paths. The two or more filtering channels filter illumination propagating along the two or more channel beam paths based on two or more spectral transmissivity distributions. The multi-channel spectral filter further includes a channel selector to direct at least a portion of the illumination beam into at least one selected filtering channel to filter the illumination beam. The multi-channel spectral filter further includes at least one beam combiner to combine illumination from the two or more filtering channels to a single optical column.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 6, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Andrew V. Hill, Amnon Manassen, Ohad Bachar
  • Publication number: 20190107727
    Abstract: A beamsplitter includes a substrate formed from a material transparent to wavelengths of light at least above a selected cutoff wavelength and reflective structures distributed across a surface of the substrate. The reflective structures split incident light having wavelengths above the selected cutoff wavelength into a reflected beam formed from portions of the incident light reflected from the reflective structures and a transmitted beam formed from portions of the incident light transmitted through the substrate. A splitting ratio of a power of the reflected beam to a power of the transmitted beam is based on a ratio of surface area of the reflective surfaces to an area of the incident light on the substrate. Separation distances between neighboring reflective structures are smaller than the cutoff wavelength such that diffracted power of the incident light having wavelengths above the selected cutoff wavelength is maintained below a selected tolerance.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 11, 2019
    Inventors: Dmitry Gorelik, Andrew V. Hill, Ohad Bachar, Amnon Manassen, Daria Negri