Patents by Inventor Ole L. Olesen

Ole L. Olesen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5308456
    Abstract: Sulfur compounds poison catalysts, such as the anode catalysts and reformer catalysts within molten carbonate fuel cell systems. This poisoning is eliminated using a sulfur scrubber 29 located prior to the inlet of the cathode chamber 13. Anode exhaust 19 which contains water, carbon dioxide and possibly sulfur impurities, is combined with a cathode exhaust recycle stream 22 and an oxidant stream 25 and burned in a burner 33 to produce water, carbon dioxide. If sulfur compounds are present in either the anode exhaust, cathode exhaust stream, or oxidant stream, sulfur trioxide and sulfur dioxide are produced. The combined oxidant-combustion stream 27 from the burner 33 is then directed through a sulfur scrubber 29 prior to entering the cathode chamber 13. The sulfur scrubber 29 absorbs sulfur compounds from the combined oxidant-combustion stream 27. Removal of the sulfur compounds at this point prevents concentration of the sulfur in the molten carbonate fuel cell system.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: May 3, 1994
    Assignee: International Fuel Cells Corporation
    Inventors: Harold R. Kunz, Richard A. Sederquist, Ole L. Olesen
  • Patent number: 5213912
    Abstract: Sulfur compounds poison catalysts, such as the anode catalysts and reformer catalysts within molten carbonate fuel cell systems. This poisoning is eliminated using a sulfur scrubber 29 located prior to the inlet of the cathode chamber 13. Anode exhaust 19 which contains water, carbon dioxide and possibly sulfur impurities, is combined with a cathode exhaust recycle stream 22 and an oxidant stream 25 and burned in a burner 33 to produce water, carbon dioxide. If sulfur compounds are present in either the anode exhaust, cathode exhaust stream, or oxidant stream, sulfur trioxide and sulfur dioxide are produced. The combined oxidant-combustion stream 27 from the burner 33 is then directed through a sulfur scrubber 29 prior to entering the cathode chamber 13. The sulfur scrubber 29 absorbs sulfur compounds from the combined oxidant-combustion stream 27. Removal of the sulfur compounds at this point prevents concentration of the sulfur in the molten carbonate fuel cell system.
    Type: Grant
    Filed: December 30, 1991
    Date of Patent: May 25, 1993
    Assignee: International Fuel Cells Corporation
    Inventors: Harold R. Kunz, Richard A. Sederquist, Ole L. Olesen
  • Patent number: 4820314
    Abstract: The reformer is designed for use with a large fuel cell power plant capable of producing megawatts of power, as, for example, would be used by a public utility. The catalyst tubes in the reformer have their upper ends at staggered elevations so as to be capable of having their temperatures individually monitored by infrared temperature sensors. The catalyst tubes are mounted on a floating support within the reformer housing so as to be free to undergo expansion and contraction during periods of internal temperature variation as the reformer is operated. The floating support is preferably formed from fuel manifolds suspended in the reformer housing. Baffles are included in the reformer housing for evenly distributing heat to the catalyst tube arrays. The reformer has a long burner tube which is approximately the same length as the catalyst tubes.
    Type: Grant
    Filed: February 11, 1987
    Date of Patent: April 11, 1989
    Assignee: International Fuel Cells Corporation
    Inventors: Ronald Cohen, Ole L. Olesen, Joseph J. Faintani, George T. Suljak
  • Patent number: 4661323
    Abstract: Tubular catalytic reactors within a furnace are each surrounded by a radiator having an inner cylindrical surface spaced from the reactor defining a flow path for the furnace gases. The inner surface of the radiator has a plurality of adjacent helical channels formed therein extending the length of the conduit. Heat from the furnace gases traveling through the flow path is picked up by the radiators by convection and radiated to the reactor. The helical grooves improve heat transfer efficiency and circumferential uniformity of heating with minimum pressure drop; and they prevent the cut off of heat to localized areas of the reactor in case of contact between the reactor and radiator walls.
    Type: Grant
    Filed: April 8, 1985
    Date of Patent: April 28, 1987
    Inventor: Ole L. Olesen
  • Patent number: 4098587
    Abstract: Compact reaction apparatus, such as for steam reforming a hydrocarbon feedstock to produce hydrogen, includes a plurality of reactor tubes disposed within a furnace. A portion of each reactor extends into the burner cavity or combustion volume of the furnace. Baffles, such as sleeves, are disposed around these portions of the reactor tubes to shield the tubes from excessive radiant heat from the wall of the burner cavity and to more evenly distribute heat among and around all of the reactors. These baffles permit the reactor tubes to be closely packed within the furnace and reduce temperature differences between the tubes.
    Type: Grant
    Filed: August 25, 1977
    Date of Patent: July 4, 1978
    Assignee: United Technologies Corporation
    Inventors: George R. Krar, Ole L. Olesen, Richard A. Sederquist, Donald F. Szydlowski