Patents by Inventor Oleg Kovalenkov

Oleg Kovalenkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577143
    Abstract: A backflow liner in an epitaxial growth system is provided in order to control gas flow and protect the surface of substrates throughout an epitaxial growth cycle. The backflow liner provides critical protection during the warming time prior to substrate pre-treatment, while the growth environment reaches steady state condition between the pre-treatment and the growth process, during pauses between the layer depositions in case of multilayer structure growth, and during the cooling process. The direction of the gas flow through the backflow liner is counter to the deposition gas flows directed from the source end of the growth system. The backflow liner is therefore designed to shape the flow of gases to prevent formation of the vortex-type streams in the growth system that may negatively affect the growth process.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 21, 2017
    Assignee: Ostendo Technologies, Inc.
    Inventors: Lisa Shapovalov, Oleg Kovalenkov, Vladimir Ivantsov, Alexander Syrkin
  • Patent number: 9023673
    Abstract: A method to grow single phase group III-nitride articles including films, templates, free-standing substrates, and bulk crystals grown in semi-polar and non-polar orientations is disclosed. One or more steps in the growth process includes the use of additional free hydrogen chloride to eliminate undesirable phases, reduce surface roughness, and increase crystalline quality. The invention is particularly well-suited to the production of single crystal (11.2) GaN articles that have particular use in visible light emitting devices.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: May 5, 2015
    Assignee: Ostendo Technologies, Inc.
    Inventors: Lisa Shapovalov, Oleg Kovalenkov, Vladimir Ivantsov, Vitali Soukhoveev, Alexander Syrkin, Alexander Usikov
  • Patent number: 8992684
    Abstract: The geometry of transition from cylindrical to rectangular shape through the conical part in hydride vapor phase epitaxial (HVPE) systems for deposition of III-nitride films is disclosed. It is used to ensure the laminar gas flow inside the growth zone of the system. For the velocity of flow within the atmospheric pressure reactor to be sufficient, the precursors are injected through the narrow diameter tubing injectors. The quartz reactor geometry is introduced to control the transition from jet to laminar flow.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 31, 2015
    Assignee: Ostendo Technologies, Inc.
    Inventors: Oleg Kovalenkov, Vitali Soukhoveev, Alexander Syrkin, Vladimir Sizov
  • Patent number: 8673074
    Abstract: A method of growing planar non-polar m-plane or semi-polar III-Nitride material, such as an m-plane gallium nitride (GaN) epitaxial layer, wherein the III-Nitride material is grown on a suitable substrate, such as an m-plane sapphire substrate, using hydride vapor phase epitaxy (HVPE). The method includes in-situ pretreatment of the substrate at elevated temperatures in an atmosphere of ammonia and argon, growing an intermediate layer such as an aluminum nitride (AlN) or aluminum-gallium nitride (AlGaN) on the annealed substrate, and growing the non-polar m-plane III-Nitride epitaxial layer on the intermediate layer using HVPE.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 18, 2014
    Assignee: Ostendo Technologies, Inc.
    Inventors: Alexander Usikov, Alexander Syrkin, Robert G. W. Brown, Hussein S. El-Ghoroury, Philippe Spiberg, Vladimir Ivantsov, Oleg Kovalenkov, Lisa Shapovalova
  • Patent number: 7727333
    Abstract: Hydride phase vapor epitaxy (HVPE) growth apparatus, methods and materials and structures grown thereby. A HVPE growth apparatus includes generation, accumulation and growth zones. A first reactive gas reacts with an indium source inside the generation zone to produce a first gas product having an indium-containing compound. The first gas product is transported to the accumulation zone where it cools and condenses into a source material having an indium-containing compound. The source material is collected in the accumulation zone and evaporated. Vapor or gas resulting from evaporation of the source material forms reacts with a second reactive gas in the growth zone for growth of ternary and quaternary materials including indium gallium nitride, indium aluminum nitride, and indium gallium aluminum nitride.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 1, 2010
    Assignee: Technologies and Devices International, Inc.
    Inventors: Alexander L. Syrkin, Vladimir Ivantsov, Alexander Usikov, Oleg Kovalenkov, Vladimir A. Dmitriev
  • Publication number: 20100012948
    Abstract: A method of growing planar non-polar m-plane or semi-polar III-Nitride material, such as an m-plane gallium nitride (GaN) epitaxial layer, wherein the III-Nitride material is grown on a suitable substrate, such as an m-plane Sapphire substrate, using hydride vapor phase epitaxy (HVPE). The method includes in-situ pretreatment of the substrate at elevated temperatures in the ambient of ammonia and argon, growing an intermediate layer such as an aluminum nitride (AlN) or aluminum-gallium nitride (AlGaN) on the annealed substrate, and growing the non-polar m-plane III-Nitride epitaxial layer on the intermediate layer using HVPE.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 21, 2010
    Applicant: OSTENDO TECHNOLOGIES, INC.
    Inventors: Alexander Usikov, Alexander Syrkin, Robert G.W. Brown, Hussein S. El-Ghoroury, Philippe Spiberg, Vladimir Ivantsov, Oleg Kovalenkov, Lisa Shapovalova
  • Publication number: 20090286331
    Abstract: HVPE method for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. A HVPE reactor includes a reactor tube, a growth zone, a heating element and a plurality of gas blocks. A substrate holder is capable of holding multiple substrates and can be a single or multi-level substrate holder. The gas delivery blocks are independently controllable. Gas flows from the delivery blocks are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed on larger area substrates, such as 3-12? substrates.
    Type: Application
    Filed: November 10, 2008
    Publication date: November 19, 2009
    Applicant: Freiberger Compound Materials GMBH
    Inventors: Vladimir Dmitriev, Viacheslav Maslennikov, Vitali Soukhoveev, Oleg Kovalenkov
  • Publication number: 20070032046
    Abstract: HVPE method for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. A HVPE reactor includes a reactor tube, a growth zone, a heating element and a plurality of gas blocks. A substrate holder is capable of holding multiple substrates and can be a single or multi-level substrate holder. The gas delivery blocks are independently controllable. Gas flows from the delivery blocks are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed on larger area substrates, such as 3-12? substrates.
    Type: Application
    Filed: July 1, 2005
    Publication date: February 8, 2007
    Inventors: Vladimir Dmitriev, Viacheslav Maslennikov, Vitali Soukhoveev, Oleg Kovalenkov
  • Publication number: 20060011135
    Abstract: HVPE reactor for simultaneously fabricating multiple Group III nitride semiconductor structures during a single reactor run. The HVPE reactor includes a reactor chamber, a growth zone, a heating element and a gas supply system that can include a plurality of gas blocks. A substrate holder holds multiple substrates and can be a single or multi-level substrate holder. Gas flows from gas delivery blocks are independently controllable and are mixed to provide a substantially uniform gas environment within the growth zone. The substrate holder can be controlled, e.g., rotated and/or tilted, for uniform material growth. Multiple Group III nitride semiconductor structures can be grown on each substrate during a single fabrication run of the HVPE reactor. Growth on different substrates is substantially uniform and can be performed simultaneously on multiple larger area substrates, such as 3-12? substrates.
    Type: Application
    Filed: July 1, 2005
    Publication date: January 19, 2006
    Inventors: Vladimir A. Dmitriev, Viacheslav Maslennikov, Vitali Soukhoveev, Oleg Kovalenkov
  • Patent number: 6955719
    Abstract: A method for fabricating semiconductor devices with thin (e.g., submicron) and/or thick (e.g., between 1 micron and 100 microns thick) Group III nitride layers during a single epitaxial run is provided, the layers exhibiting sharp layer-to-layer interfaces. According to one aspect, an HVPE reactor is provided that includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor is provided that includes at least one growth zone as well as a growth interruption zone. According to another aspect, an HVPE reactor is provided that includes extended growth sources such as slow growth rate gallium source with a reduced gallium surface area. According to another aspect, an HVPE reactor is provided that includes multiple sources of the same material, for example Mg, which can be used sequentially to prolong a growth cycle.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: October 18, 2005
    Assignee: Technologies and Devices, Inc.
    Inventors: Vladimir A. Dmitriev, Denis V. Tsvetkov, Aleksei Pechnikov, Yuri V. Melnik, Aleksandr Usikov, Oleg Kovalenkov