Patents by Inventor Oleh Krutko

Oleh Krutko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10756508
    Abstract: The present disclosure relates to a monolithic externally modulated laser (EML), which includes a substrate, a laser element, and an electro-absorption modulator (EAM). Both the laser element and the EAM reside over the substrate. The laser element includes a laser bottom electrode over the substrate, a laser core component over the laser bottom electrode, and a laser top electrode over the laser core component. The EAM includes a modulator bottom electrode over the substrate, a modulator core component over the modulator bottom electrode, and a modulator top electrode over the modulator core component. Herein, at least portions of the substrate, which are directly under the laser bottom electrode and directly under the modulator bottom electrode, are electrically non-conductive. The laser top electrode is isolated from the modulator top electrode, and the laser bottom electrode is isolated from the modulator bottom electrode.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 25, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Oleh Krutko, Craig Francis Steinbeiser
  • Publication number: 20200021080
    Abstract: The present disclosure relates to a monolithic externally modulated laser (EML), which includes a substrate, a laser element, and an electro-absorption modulator (EAM). Both the laser element and the EAM reside over the substrate. The laser element includes a laser bottom electrode over the substrate, a laser core component over the laser bottom electrode, and a laser top electrode over the laser core component. The EAM includes a modulator bottom electrode over the substrate, a modulator core component over the modulator bottom electrode, and a modulator top electrode over the modulator core component. Herein, at least portions of the substrate, which are directly under the laser bottom electrode and directly under the modulator bottom electrode, are electrically non-conductive. The laser top electrode is isolated from the modulator top electrode, and the laser bottom electrode is isolated from the modulator bottom electrode.
    Type: Application
    Filed: February 20, 2019
    Publication date: January 16, 2020
    Inventors: Oleh Krutko, Craig Francis Steinbeiser
  • Patent number: 9899292
    Abstract: Top-side cooling of Radio Frequency (RF) products in air cavity packages is provided. According to one aspect, an air cavity package comprises a substrate, a RF component mounted to the substrate, and a lid structure comprising a first material and being mounted to the substrate that covers the RF component such that a cavity is formed within the lid structure and about the RF component. At least one opening is provided in a top portion of the lid. The air cavity package also comprises a heat transfer structure comprising a second material and comprising a heat path extending from the top surface of the substrate through the opening(s) in the lid to the top outer surface of the air cavity package to provide a top-side thermal interface. In one embodiment, the lid is comprised of a molded material that absorbs RF signals and the heat transfer structure is metal.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 20, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Anthony Chiu, Craig Steinbeiser, Oleh Krutko, John Beall
  • Publication number: 20170229368
    Abstract: Top-side cooling of Radio Frequency (RF) products in air cavity packages is provided. According to one aspect, an air cavity package comprises a substrate, a RF component mounted to the substrate, and a lid structure comprising a first material and being mounted to the substrate that covers the RF component such that a cavity is formed within the lid structure and about the RF component. At least one opening is provided in a top portion of the lid. The air cavity package also comprises a heat transfer structure comprising a second material and comprising a heat path extending from the top surface of the substrate through the opening(s) in the lid to the top outer surface of the air cavity package to provide a top-side thermal interface. In one embodiment, the lid is comprised of a molded material that absorbs RF signals and the heat transfer structure is metal.
    Type: Application
    Filed: August 9, 2016
    Publication date: August 10, 2017
    Inventors: Anthony Chiu, Craig Steinbeiser, Oleh Krutko, John Beall
  • Patent number: 8901657
    Abstract: Embodiments include but are not limited to apparatuses and systems including an integrated capacitor. An integrated capacitor may include a substrate, a first capacitor plate having four edges, and a second capacitor plate overhanging the four edges of the first capacitor plate and disposed over the first capacitor plate such that the first capacitor plate is disposed between the second capacitor plate and the substrate.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: December 2, 2014
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Oleh Krutko, Larry Witkowski
  • Patent number: 7718486
    Abstract: Methods and systems for fabricating integrated pairs of HBT/FET's are disclosed. One preferred embodiment comprises a method of fabricating an integrated pair of GaAs-based HBT and FET. The method comprises the steps of: growing a first set of epitaxial layers for fabricating the FET on a semi-insulating GaAs substrate; fabricating a highly doped thick GaAs layer serving as the cap layer for the FET and the subcollector layer for the HBT; and producing a second set of epitaxial layers for fabricating the HBT.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 18, 2010
    Assignee: Anadigics, Inc.
    Inventors: Oleh Krutko, Kezhou Xie, Mohsen Shokrani, Aditya Gupta, Boris Gedzberg
  • Publication number: 20060113566
    Abstract: Methods and systems for fabricating integrated pairs of HBT/FET's are disclosed. One preferred embodiment comprises a method of fabricating an integrated pair of GaAs-based HBT and FET. The method comprises the steps of: growing a first set of epitaxial layers for fabricating the FET on a semi-insulating GaAs substrate; fabricating a highly doped thick GaAs layer serving as the cap layer for the FET and the subcollector layer for the HBT; and producing a second set of epitaxial layers for fabricating the HBT.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 1, 2006
    Inventors: Oleh Krutko, Kezhou Xie, Mohsen Shokrani, Aditya Gupta, Boris Gedzberg
  • Patent number: 7015519
    Abstract: Methods and systems for fabricating integrated pairs of HBT/FET's are disclosed. One preferred embodiment comprises a method of fabricating an integrated pair of GaAs-based HBT and FET. The method comprises the steps of: growing a first set of epitaxial layers for fabricating the FET on a semi-insulating GaAs substrate; fabricating a highly doped thick GaAs layer serving as the cap layer for the FET and the subcollector layer for the HBT; and producing a second set of epitaxial layers for fabricating the HBT.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: March 21, 2006
    Assignee: Anadigics, Inc.
    Inventors: Oleh Krutko, Kezhou Xie, Mohsen Shokrani, Aditya Gupta, Boris Gedzberg
  • Publication number: 20050184808
    Abstract: A monolithically integrated amplifier comprising at least one heterojunction bipolar transistor and at least one field effect transistor is disclosed wherein the field effect transistor provides improved ruggedness by limiting the base and/or collector current to the HBT during severe load mismatch and/or high overdrive.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 25, 2005
    Inventors: Oleh Krutko, Aditya Gupta, M. Khatibzadeh, Kezhou Xie
  • Publication number: 20050184310
    Abstract: Methods and systems for fabricating integrated pairs of HBT/FET's are disclosed. One preferred embodiment comprises a method of fabricating an integrated pair of GaAs-based HBT and FET. The method comprises the steps of: growing a first set of epitaxial layers for fabricating the FET on a semi-insulating GaAs substrate; fabricating a highly doped thick GaAs layer serving as the cap layer for the FET and the subcollector layer for the HBT; and producing a second set of epitaxial layers for fabricating the HBT.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 25, 2005
    Inventors: Oleh Krutko, Kezhou Xie, Mohsen Shokrani, Aditya Gupta, Boris Gedzberg