Patents by Inventor Oleksandr Karpin

Oleksandr Karpin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200005009
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Application
    Filed: May 21, 2019
    Publication date: January 2, 2020
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 10444887
    Abstract: An apparatus including a first signal generator of a force sensing circuit to output a first excitation (TX) signal on a first terminal and a second TX signal on a second terminal. The first terminal and the second terminal are configured to couple to a first force sensor and a reference sensor. The apparatus includes a first receiver channel coupled to a third terminal and a fourth terminal. The third terminal is configured to couple to the first force sensor and the fourth terminal is configured to couple to the reference sensor. The force sensing circuit is configured to measure a first receive (RX) signal from the first force sensor via the third terminal and a second RX signal from the reference sensor via the fourth terminal. The force sensing circuit is configured to measure a force value indicative of a force applied to the first force sensor.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: October 15, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Igor Kolych, Oleksandr Hoshtanar, Jens Weber, Oleksandr Karpin
  • Publication number: 20190294855
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: March 27, 2019
    Publication date: September 26, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10303914
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 28, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 10282585
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 7, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10235558
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 19, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Publication number: 20190005293
    Abstract: A capacitive fingerprint sensor includes a set of capacitive sensor electrodes in a sensing area. The set of capacitive sensor electrodes includes a set of transmit (Tx) sensor electrodes, a set of receive (Rx) sensor electrodes, and a set of compensation electrodes. The fingerprint sensor also includes a multiphase capacitance sensor that is configured to perform a sensing scan of the capacitive sensor electrodes by applying a first Tx signal to a first subset of the Tx sensor electrodes while simultaneously applying a second Tx signal to a second subset of the set of Tx sensor electrodes, and based on a compensation signal received at the set of compensation electrodes, reduce a component of the Rx signal originating from a source other than a contact at the sensing area.
    Type: Application
    Filed: June 25, 2018
    Publication date: January 3, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Hans Klein, Oleksandr Karpin
  • Publication number: 20180365476
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Roman Ogirko, Hans Klein, David G. Wright, Igor Kolych, Andriy Maharyta, Hassane El-Khoury, Oleksandr Karpin, Oleksandr Hoshtanar, Igor Kravets
  • Patent number: 10095347
    Abstract: Various embodiments provide an object recognition process that is configured to detect a passive stylus and reject non-passive stylus objects on a touch screen, including an edge portion of the touch screen. In one embodiment, the object recognition process includes receiving sense signals from sense elements of a sense array in response to a touch object being on the sense array, selecting three sense signals from three respective sense elements, calculating a first sum of the strengths of the three selected signals, calculating a second sum of the strengths of two of the selected signals which are greater than the strength of one of the selected signals; and determining a type of the object (e.g., a passive stylus or a user hand's grip shadow) based on the first sum and the second sum.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: October 9, 2018
    Assignee: Wacom Co., Ltd.
    Inventors: Oleksiy Savitskyy, Oleksandr Karpin, Igor Kravets
  • Patent number: 10013593
    Abstract: A capacitive fingerprint sensor includes a set of capacitive sensor electrodes in a sensing area. The set of capacitive sensor electrodes includes a set of transmit (Tx) sensor electrodes, a set of receive (Rx) sensor electrodes, and a set of compensation electrodes. The fingerprint sensor also includes a multiphase capacitance sensor that is configured to perform a sensing scan of the capacitive sensor electrodes by applying a first Tx signal to a first subset of the Tx sensor electrodes while simultaneously applying a second Tx signal to a second subset of the set of Tx sensor electrodes, and based on a compensation signal received at the set of compensation electrodes, reduce a component of the Rx signal originating from a source other than a contact at the sensing area.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: July 3, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Hans Klein, Oleksandr Karpin
  • Publication number: 20180164915
    Abstract: The sensing circuit includes including first input of a first electrode, a first set of inputs of a first set of two or more electrodes forming a first intersection and a second intersection, and a second set of inputs of a second set of two or more electrodes forming the second intersection and a third intersection. The sensing circuit includes a scan control circuit, coupled to the touch panel of electrodes, to concurrently select the sets of electrodes via a multiplexer. The touch sensing circuit includes an analog front end configured to generate digital values representative of mutual capacitances of a first and second unit cell, wherein the first unit cell comprises the first and second intersections and the second unit cell comprises the second and third intersections, and a channel engine configured to generate capacitance values corresponding to the unit cells.
    Type: Application
    Filed: March 31, 2017
    Publication date: June 14, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Oleksandr Karpin, Mykhaylo Krekhovetskyy, Ruslan Omelchuk, Roman Ogirko, Victor Kremin
  • Publication number: 20180081479
    Abstract: An apparatus including a first signal generator of a force sensing circuit to output a first excitation (TX) signal on a first terminal and a second TX signal on a second terminal. The first terminal and the second terminal are configured to couple to a first force sensor and a reference sensor. The apparatus includes a first receiver channel coupled to a third terminal and a fourth terminal. The third terminal is configured to couple to the first force sensor and the fourth terminal is configured to couple to the reference sensor. The force sensing circuit is configured to measure a first receive (RX) signal from the first force sensor via the third terminal and a second RX signal from the reference sensor via the fourth terminal. The force sensing circuit is configured to measure a force value indicative of a force applied to the first force sensor.
    Type: Application
    Filed: June 29, 2017
    Publication date: March 22, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Igor Kolych, Oleksandr Hoshtanar, Jens Weber, Oleksandr Karpin
  • Publication number: 20180012055
    Abstract: An example system drives one or more transmit signals on first electrodes disposed in a first layer and propagating electrodes disposed in a second layer. The system measures a capacitance of sensors through a of second electrodes. Each second electrode crosses each first electrode to provide a plurality of discrete sensor areas, each discrete sensor area associated with a difference crossing and including a portion of at least one propagating electrode. Each second electrode is galvanically isolated from the first electrodes and the propagating electrodes.
    Type: Application
    Filed: June 22, 2017
    Publication date: January 11, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 9841840
    Abstract: A capacitance sensing system can filter noise that presents in a subset of electrodes in the proximity of a sense object (i.e., finger). A capacitance sensing system can include a sense network comprising a plurality of electrodes for generating sense values; a noise listening circuit configured to detect noise on a plurality of the electrodes; and a filtering circuit that enables a filtering for localized noise events when detected noise values are above one level, and disables the filtering for localized noise events when detected noise values are below the one level.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: December 12, 2017
    Assignee: PARADE TECHNOLOGIES, LTD.
    Inventors: Darrin Vallis, Victor Kremin, Andriy Maharyta, Yuriy Boychuk, Anton Konovalov, Oleksandr Karpin, Ihor Musijchuk, Hans Klein, Edward Grivna
  • Publication number: 20170262685
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: September 14, 2017
    Applicant: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Patent number: 9704012
    Abstract: An example sensor array includes a first electrode disposed in a first layer, multiple second electrodes disposed in a second layer, and multiple third electrodes disposed outside of the first layer. The second electrodes are galvanically isolated from the first electrode and the third electrodes. In a plan view of the fingerprint sensor array, an area of each third electrode is located within an area of the first electrode.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 11, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin
  • Patent number: 9684418
    Abstract: A water-resistant capacitance sensing apparatus comprising a plurality of capacitive sense elements and a capacitance sensing circuit configured to measure both the mutual capacitance and self-capacitance on the plurality of capacitive sense elements. A method for water-resistant capacitance sensing, the method comprising performing a self-capacitance scan and a mutual capacitance scan, and detecting, by a processing device, a presence of an object with the plurality of sense elements. The method further determines whether the detected presence of the object is legitimate.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: June 20, 2017
    Assignee: PARADE TECHNOLOGIES, LTD.
    Inventors: Michael Patrick Hills, Volodymyr Burkovskyy, Oleksandr Karpin, Seok-Pyong Park, Patrick Prendergast
  • Publication number: 20170140196
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 18, 2017
    Applicant: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Patent number: 9639734
    Abstract: A fingerprint sensor-compatible overlay material which uses anisotropic conductive material to enable accurate imaging of a fingerprint through an overlay is disclosed. The anisotropic conductive material has increased conductivity in a direction orthogonal to the fingerprint sensor, increasing the capacitive coupling of the fingerprint to the sensor surface, allowing the fingerprint sensor to accurately image the fingerprint through the overlay. Methods for forming a fingerprint sensor-compatible overlay are also disclosed.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 2, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Hans Klein, Igor Kolych, Oleksandr Karpin, Igor Kravets, Oleksandr Hoshtanar
  • Publication number: 20170076130
    Abstract: An example sensor array includes a first electrode disposed in a first layer, multiple second electrodes disposed in a second layer, and multiple third electrodes disposed outside of the first layer. The second electrodes are galvanically isolated from the first electrode and the third electrodes. In a plan view of the fingerprint sensor array, an area of each third electrode is located within an area of the first electrode.
    Type: Application
    Filed: December 21, 2015
    Publication date: March 16, 2017
    Inventors: Igor Kravets, Oleksandr Hoshtanar, Igor Kolych, Oleksandr Karpin