Patents by Inventor Oliver Ast

Oliver Ast has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141044
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: July 6, 2023
    Publication date: May 2, 2024
    Inventors: Oliver AST, Marina BACAC, Sabine IMHOF-JUNG, Christiane NEUMANN, Christian KLEIN, Stefan KLOSTERMANN, Michael MOLHOJ, Joerg Thomas REGULA, Wolfgang SCHAEFER, Pablo UMANA
  • Patent number: 11952421
    Abstract: The present invention relates to bispecific antibodies against ROR1 and CD3, their manufacture and use.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: April 9, 2024
    Assignee: Bristol-Myers Squibb Company
    Inventors: Minh Diem Vu, Klaus Strein, Oliver Ast, Tanja Fauti, Anne Freimoser-Grundschober, Ralf Hosse, Christian Klein, Ekkehard Moessner, Samuel Moser, Ramona Murr, Pablo Umana, Sabine Jung-Imhof, Stefan Klostermann, Michael Molhoj, Joerg Regula, Wolfgang Schaefer
  • Publication number: 20230340160
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: April 17, 2023
    Publication date: October 26, 2023
    Inventors: Oliver AST, Peter BRUENKER, Tanja FAUTI, Anne FREIMOSER-GRUNDSCHOBER, Christiane NEUMANN, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA
  • Publication number: 20230322957
    Abstract: The invention relates to new antibodies against BCMA, their manufacture and use.
    Type: Application
    Filed: November 21, 2022
    Publication date: October 12, 2023
    Inventors: Minh Diem Vu, Klaus Strein, Oliver Ast, Marina Bacac, Camille Delon, Lydia Jasmin Hanisch, Anne Freimoser-Grundschober, Christian Klein, Ekkehard Moessner, Samuel Moser, Pablo Umana, Tina Weinzierl
  • Publication number: 20230287118
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: October 13, 2022
    Publication date: September 14, 2023
    Inventors: Oliver AST, Marina Bacac, Sabine Imhof-Jung, Christiane Neumann, Christian Klein, Stefan Klostermann, Michael Molhoj, Joerg Thomas Regula, Wolfgang Schaefer, Pablo Umana
  • Publication number: 20220403027
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: April 1, 2022
    Publication date: December 22, 2022
    Inventors: Oliver AST, Marina BACAC, Sabine IMHOF-JUNG, Christiane NEUMANN, Christian KLEIN, Stefan KLOSTERMANN, Michael MOLHOJ, Joerg Thomas REGULA, Wolfgang SCHAEFER, Pablo UMANA
  • Publication number: 20220242971
    Abstract: The present invention generally relates to antigen-specific immunoconjugates for selectively delivering effector moieties that influence cellular activity. More specifically, the invention provides novel immunoconjugates comprising a first antigen binding moiety, an Fc domain and a single effector moiety. In addition, the present invention relates to polynucleotides encoding such immunoconjugates, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the immunoconjugates of the invention, and to methods of using these immunoconjugates in the treatment of disease.
    Type: Application
    Filed: September 27, 2021
    Publication date: August 4, 2022
    Applicant: Roche Glycart AG
    Inventors: Oliver AST, Peter BRUENKER, Thomas U. HOFER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA
  • Patent number: 11130822
    Abstract: The present invention generally relates to antigen-specific immunoconjugates for selectively delivering effector moieties that influence cellular activity. More specifically, the invention provides novel immunoconjugates comprising a first antigen binding moiety, an Fc domain and a single effector moiety. In addition, the present invention relates to polynucleotides encoding such immunoconjugates, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the immunoconjugates of the invention, and to methods of using these immunoconjugates in the treatment of disease.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 28, 2021
    Assignee: ROCHE GLYCART AG
    Inventors: Oliver Ast, Peter Bruenker, Thomas U. Hofer, Ralf Hosse, Christian Klein, Ekkehard Moessner, Pablo Umana
  • Patent number: 11117965
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: September 14, 2021
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Oliver Ast, Marina Bacac, Sabine Imhof-Jung, Christiane Neumann, Christian Klein, Stefan Klostermann, Michael Molhoj, Joerg Thomas Regula, Wolfgang Schaefer, Pablo Umana
  • Patent number: 11111312
    Abstract: The present invention generally relates to mutant interleukin-2 polypeptides that exhibit reduced affinity to the ?-subunit of the IL-2 receptor, for use as immunotherapeutic agents. In addition, the invention relates to immunoconjugates comprising said mutant IL-2 polypeptides, polynucleotide molecules encoding the mutant IL-2 polypeptides or immunoconjugates, and vectors and host cells comprising such polynucleotide molecules. The invention further relates to methods for producing the mutant IL-2 polypeptides or immunoconjugates, pharmaceutical compositions comprising the same, and uses thereof.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 7, 2021
    Assignee: ROCHE GLYCART AG
    Inventors: Oliver Ast, Peter Bruenker, Anne Freimoser-Grundschober, Sylvia Herter, Thomas U. Hofer, Ralf Hosse, Christian Klein, Ekkehard Moessner, Valeria G. Nicolini, Pablo Umana
  • Publication number: 20210070873
    Abstract: An antibody specifically binding to human BCMA, characterized in that the binding of said antibody is not reduced by APRIL and not reduced by BAFF, said antibody does not alter APRIL-dependent NF-?B activation, BAFF-dependent NF-?B activation, and does not alter NF-?B activation without BAFF and APRIL is useful as a therapeutic agent.
    Type: Application
    Filed: November 4, 2020
    Publication date: March 11, 2021
    Inventors: Minh Diem VU, Klaus Strein, Ekkehard Moessner, Ralf Hosse, Oliver Ast, Anne Freimoser-Grundschober, Marina Bacac, Tanja Fauti, Christian Klein, Pablo Umana, Samuel Moser
  • Patent number: 10851171
    Abstract: An antibody specifically binding to human BCMA, characterized in that the binding of said antibody is not reduced by APRIL and not reduced by BAFF, said antibody does not alter APRIL-dependent NF-?B activation, BAFF-dependent NF-?B activation, and does not alter NF-?B activation without BAFF and APRIL is useful as a therapeutic agent.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: December 1, 2020
    Assignee: ENGMAB SARL
    Inventors: Minh Diem Vu, Klaus Strein, Ekkehard Moessner, Ralf Hosse, Oliver Ast, Anne Freimoser-Grundschober, Marina Bacac, Tanja Fauti, Christian Klein, Pablo Umana, Samuel Moser
  • Publication number: 20200283545
    Abstract: The invention relates to new antibodies against BCMA, their manufacture and use.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 10, 2020
    Inventors: Minh Diem Vu, Klaus Strein, Oliver Ast, Marina Bacac, Camille Delon, Lydia Jasmin Hanisch, Anne Freimoser-Grundschober, Christian Klein, Ekkehard Moessner, Samuel Moser, Pablo Umana, Tina Weinzierl
  • Publication number: 20200255521
    Abstract: A bispecific antibody specifically binding to the two targets human CD3? (further named also as “CD3”) and the extracellular domain of human ROR1 (further named also as “ROR1”), characterized in that the bispecific antibody does not internalize in a cell based assay at 37° C. during 2 hrs, using ROR1-positive B-CLL cells and used at an antibody concentration of 1 nM, whereby not internalize means, that the mean fluorescence intensity (MFI), as detected by flow cytometry, of a bispecific antibody upon binding to ROR1-positive primary B-CLL cells measured at time 0 is not reduced for more than 50%, preferably not more than 30% when re-measured after a 2 hr-incubation at 37° C. and which is useful for the treatment of B-cell malignancies like Chronic Lymphocytic Leukemia or B-cell disorders expressing ROR1 and ROR1-positive solid tumors.
    Type: Application
    Filed: January 27, 2020
    Publication date: August 13, 2020
    Inventors: Minh Diem VU, Klaus Strein, Ekkehard Moessner, Ralf Hosse, Oliver Ast, Anne Freimoser-Grundschober, Tanja Fauti, Ramona Murr, Christian Klein, Pablo Umana, Samuel Moser
  • Publication number: 20200231673
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: February 24, 2020
    Publication date: July 23, 2020
    Inventors: Oliver AST, Marina BACAC, Sabine IMHOF-JUNG, Christiane NEUMANN, Christian KLEIN, Stefan KLOSTERMANN, Michael MOLHOJ, Joerg Thomas REGULA, Wolfgang SCHAEFER, Pablo UMANA
  • Patent number: 10683369
    Abstract: The invention relates to new antibodies against BCMA, their manufacture and use.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: June 16, 2020
    Assignee: EngMab Sàrl
    Inventors: Minh Diem Vu, Klaus Strein, Oliver Ast, Marina Bacac, Camille Delon, Lydia Jasmin Hanisch, Anne Freimoser-Grundschober, Christian Klein, Ekkehard Moessner, Samuel Moser, Pablo Umana, Tina Weinzierl
  • Patent number: 10611841
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: April 7, 2020
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Oliver Ast, Marina Bacac, Sabine Imhof-Jung, Christiane Neumann, Christian Klein, Stefan Klostermann, Michael Molhoj, Joerg Thomas Regula, Wolfgang Schaefer, Pablo Umana
  • Patent number: 10611840
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: April 7, 2020
    Assignee: Hoffman-La Roche Inc.
    Inventors: Oliver Ast, Marina Bacac, Sabine Imhof-Jung, Christiane Neumann, Christian Klein, Stefan Klostermann, Michael Molhoj, Joerg Thomas Regula, Wolfgang Schaefer, Pablo Umana
  • Publication number: 20190352427
    Abstract: The invention relates to new antibodies against BCMA, their manufacture and use.
    Type: Application
    Filed: August 3, 2016
    Publication date: November 21, 2019
    Inventors: Minh Diem Vu, Klaus Strein, Oliver Ast, Marina Bacac, Camille Delon, Lydia Jasmin Duerner, Anne Freimoser-Grundschober, Christian Klein, Ekkehard Moessner, Samuel Moser, Pablo Umana, Tina Weinzierl
  • Publication number: 20190322763
    Abstract: The present invention generally relates to antigen-specific immunoconjugates for selectively delivering effector moieties that influence cellular activity. More specifically, the invention provides novel immunoconjugates comprising a first antigen binding moiety, an Fc domain and a single effector moiety. In addition, the present invention relates to polynucleotides encoding such immunoconjugates, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the immunoconjugates of the invention, and to methods of using these immunoconjugates in the treatment of disease.
    Type: Application
    Filed: December 10, 2018
    Publication date: October 24, 2019
    Applicant: Roche Glycart AG
    Inventors: Oliver AST, Peter BRUENKER, Thomas U. HOFER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA