Patents by Inventor Oliver Matthews, III

Oliver Matthews, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230222266
    Abstract: Methods and systems for receiving an earth-boring tool design, identifying a force model equation to utilize in simulating performance of the earth-boring tool design within a planned drilling operation, simulating performance of the earth-boring tool design within the planned drilling operation utilizing the identified force model equation, and based at least partially on the simulated performance of the earth-boring tool, estimating a probability of an actual earth-boring tool experiencing stick-slip within the planned drilling operation.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Inventors: Reed W. Spencer, John A. Bomidi, Xu Huang, Oliver Matthews, III
  • Patent number: 11098533
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: August 24, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventor: Oliver Matthews, III
  • Patent number: 10107040
    Abstract: An earth-boring tool includes primary and secondary cutting elements mounted to a tool body. The secondary cutting elements define a secondary cutting profile. The secondary cutting profile is recessed relative to the primary cutting profile, which is defined by the primary cutting elements. In an unworn condition, the primary cutting elements engage and cut a formation material while the secondary cutting elements do not. Each secondary cutting element includes a flat surface oriented at an angle relative to a longitudinal axis thereof and extending between a front cutting face and a peripheral side surface thereof. The secondary cutting elements are oriented on the tool body such that a surface area of the flat surface thereof will engage the formation material at least substantially simultaneously when the primary cutting elements reach a worn condition. Methods of forming the earth-boring tool and methods of using the earth-boring tool are also disclosed.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 23, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Kenneth R. Evans, Oliver Matthews, III, Steven C. Russell
  • Patent number: 9803428
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: October 31, 2017
    Assignee: Baker Hughes, a GE company, LLC
    Inventor: Oliver Matthews, III
  • Publication number: 20170081921
    Abstract: An earth-boring tool includes primary and secondary cutting elements mounted to a tool body. The secondary cutting elements define a secondary cutting profile. The secondary cutting profile is recessed relative to the primary cutting profile, which is defined by the primary cutting elements. In an unworn condition, the primary cutting elements engage and cut a formation material while the secondary cutting elements do not. Each secondary cutting element includes a flat surface oriented at an angle relative to a longitudinal axis thereof and extending between a front cutting face and a peripheral side surface thereof. The secondary cutting elements are oriented on the tool body such that a surface area of the flat surface thereof will engage the formation material at least substantially simultaneously when the primary cutting elements reach a worn condition. Methods of forming the earth-boring tool and methods of using the earth-boring tool are also disclosed.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 23, 2017
    Inventors: Kenneth R. Evans, Oliver Matthews, III, Steven C. Russell
  • Publication number: 20150167397
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 18, 2015
    Inventor: Oliver Matthews, III
  • Patent number: 8973466
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: March 10, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Oliver Matthews, III, David A. Stockey, Redd H. Smith
  • Patent number: 8381844
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. A nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: February 26, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Oliver Matthews, III, David A. Stockey, Redd H. Smith
  • Patent number: 8079429
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Publication number: 20100270086
    Abstract: Earth-boring drill bits include a bit body, an element having an attachment feature bonded to the bit body, and a shank assembly. Methods for assembling an earth-boring rotary drill bit include bonding a threaded element to the bit body of a drill bit and engaging the shank assembly to the threaded element. In additional embodiments, a nozzle assembly for an earth-boring rotary drill bit may include a cylindrical sleeve having a threaded surface and a threaded nozzle disposed at least partially in the cylindrical sleeve and engaged therewith. Methods of forming an earth-boring drill bit include providing a nozzle assembly including a tubular sleeve and nozzle at least partially within a nozzle port of a bit body.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Oliver Matthews, III, David A. Stockey, Redd H. Smith
  • Publication number: 20090301786
    Abstract: Geometric compensation techniques are used to improve the accuracy by which features may be located on drill bits formed using particle compaction and sintering processes. In some embodiments, a positional error to be exhibited by at least one feature in a less than fully sintered bit body upon fully sintering the bit body is predicted and the at least one feature is formed on the less than fully sintered bit body at a location at least partially determined by the predicted positional error. In other embodiments, bit bodies of earth-boring rotary drill bits are designed to include a design drilling profile and a less than fully sintered bit body is formed including a drilling profile having a shape differing from a shape of the design drilling profile. Less than fully sintered bit bodies of earth-boring rotary drill bits are formed using such methods.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Redd H. Smith, John H. Stevens, James L. Duggan, Nicholas J. Lyons, Jimmy W. Eason, Oliver Matthews, III
  • Patent number: 7357196
    Abstract: A method and apparatus for predicting the performance of a drilling system for the drilling of a well bore in a given formation includes generating a geology characteristic of the formation per unit depth according to a prescribed geology model, obtaining specifications of proposed drilling equipment for use in the drilling of the well bore, and predicting a drilling mechanics in response to the specifications as a function of the geology characteristic per unit depth according to a prescribed drilling mechanics model. Responsive to a predicted drilling mechanics, a controller controls a parameter in the drilling of the well bore. The geology characteristic includes at least rock strength. The specifications include at least a bit specification of a recommended drill bit. Lastly, the predicted drilling mechanics include at least one of bit wear, mechanical efficiency, power, and operating parameters.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: April 15, 2008
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William A. Goldman, Oliver Matthews, III, William W. King, Gary E. Weaver, Gerald L. Pruitt
  • Patent number: 7261167
    Abstract: A method and apparatus for predicting the performance of a drilling system for the drilling of a well bore in a given formation is disclosed. The method generates a geology model of a given formation. The geology model includes a geology characteristic of the given formation per unit depth. The method also determines a predicted drilling performance for a proposed drilling equipment based on the geology model and specification data of the proposed drilling equipment, wherein the specification data of the proposed drilling equipment is a function of the geology characteristic.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: August 28, 2007
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William A. Goldman, Oliver Matthews, III, William W. King, Gary E. Weaver, Gerald L. Pruitt
  • Patent number: 7032689
    Abstract: A method and apparatus for predicting the performance of a drilling system for the drilling of a well bore in a given formation includes generating a geology characteristic of the formation per unit depth according to a prescribed geology model, obtaining specifications of proposed drilling equipment for use in the drilling of the well bore, and predicting a drilling mechanics in response to the specifications as a function of the geology characteristic per unit depth according to a prescribed drilling mechanics model. Responsive to a predicted-drilling mechanics, a controller controls a parameter in the drilling of the well bore. The geology characteristic includes at least rock strength. The specifications include at least a bit specification of a recommended drill bit. Lastly, the predicted drilling mechanics include at least one of bit wear, mechanical efficiency, power, and operating parameters.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: April 25, 2006
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William A. Goldman, Oliver Matthews, III, William W. King, Gary E. Weaver, Gerald L. Pruitt
  • Patent number: 6695073
    Abstract: A fixed-cutter drill bit is optimized so that cutter torques are evenly distributed not only during drilling of homogeneous rock, but also in transitional formations.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: February 24, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Kevin L. Glass, Oliver Matthews, III
  • Patent number: 6568491
    Abstract: A graphite or silicate plug is coated with a refractory metal and positioned in the cutter pocket of a steel bodied bit as molten hardfacing material is applied to the bit surface under high temperature conditions. The refractory metal cooperates with the hardfacing material to act as a wetting agent that draws the hardfacing material into intimate contact with the body of the displacement plug. The plug is removed leaving a composite pocket opening formed by the steel body and the hardfacing material. A PDC cutter inserted into the composite pocket opening closely adheres to the sides of the opening to reduce the gap between the cutter and the hardfacing material to hereby minimize the effects of erosion in the area of the gap. The wetting material on the displacement plug permits the hardfacing material to flow into and remain in position immediately adjacent the displacement body and in the small surface area between adjacent cutter pockets.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: May 27, 2003
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Oliver Matthews, III, David P. Miess
  • Patent number: 6408953
    Abstract: A method and apparatus for predicting the performance of a drilling system for the drilling of a well bore in a given formation includes generating a geology characteristic of the formation per unit depth according to a prescribed geology model, obtaining specifications of proposed drilling equipment for use in the drilling of the well bore, and predicting a drilling mechanics in response to the specifications as a function of the geology characteristic per unit depth according to a prescribed drilling mechanics model. Responsive to a predicted drilling mechanics, a controller controls a parameter in the drilling of the well bore. The geology characteristic includes at least rock strength. The specifications include at least a bit specification of a recommended drill bit. Lastly, the predicted drilling mechanics include at least one of bit wear, mechanical efficiency, power, and operating parameters.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: June 25, 2002
    Assignee: Halliburton Energy Services, Inc.
    Inventors: William A. Goldman, Oliver Matthews, III, William W. King, Gary E. Weaver, Gerald L. Pruitt