Patents by Inventor Omer F. Yilmaz

Omer F. Yilmaz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11251897
    Abstract: Methods, systems, and optical power controllers are disclosed. Various problems caused by the use of a single L0 power controller in the prior art are addressed by using first and second L0 power controllers with the first L0 power controller managing first optical components with the optical network, and the second L0 power controller managing second optical components within the optical network.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 15, 2022
    Assignee: Infinera Corporation
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Patent number: 11196505
    Abstract: An optical network and a method are described. In the method, an orchestrator of an optical communication system receives an operation to execute, the operation being to activate or deactivate a service within a transmission signal of the optical communication system, the optical communication system having a span and an amplifier coupled to and supplying optical signals into each span. Network status data for each span within the optical communication system is retrieved, and the list of operations is analyzed with the network status data including existing data traffic on the fiber optic line to select a subset of the list of operations to execute that maintains the transmission signal below a bit error rate threshold. The orchestrator issues one or more signals to cause the one or more service within the subset of the list of operations to be activated or deactivated on the optical communication system.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: December 7, 2021
    Assignee: Infinera Corporation
    Inventors: Omer F. Yilmaz, Jonathan M. Buset, Xian Xu, Changyu Lin, Steve Sanders
  • Patent number: 10784955
    Abstract: An optical device having an amplifier and a controller is described. The amplifier is configured to amplify an optical signal in at least one of the C-Band or the L-Band. The controller includes a processor and a non-transitory computer readable medium. The non-transitory computer readable medium storing computer executable code that when executed by the processor causes the processor to: select a target tilt and gain setting from a plurality of target tilt and gain settings stored in the non-transitory computer readable medium based on the type of fault event message responsive to a fault event message affecting the C-band or the L-Band. The selected and pre-calculated target tilt and gain settings are applied to the amplifier.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: September 22, 2020
    Assignee: Infinera Corporation
    Inventors: Jonathan M. Buset, Omer F. Yilmaz, Xian Xu, Steve Sanders
  • Patent number: 10735092
    Abstract: An optical network is described that has a first ROADM node, a second ROADM node, and an optical transmission line establishing optical communication between the first ROADM node and the second ROADM node. The optical transmission line including an in-line amplifier node having a total input power and a total output power. The in-line amplifier node has a first monitoring tool configured to measure input optical power of the in-line amplifier node, and a second monitoring tool configured to measure output optical power of the in-line amplifier node. A software defined L0 network controller has circuitry configured to receive the optical power measured by the first and second monitoring tools from the in-line amplifier node, and to configure at least one of a gain and a gain tilt of the in-line amplifier node.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: August 4, 2020
    Assignee: Infinera Corporation
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Patent number: 10727936
    Abstract: Methods, systems, and optical power controllers are disclosed. Various problems caused by the use of a single L0 power controller in the prior art are addressed by using first and second L0 power controllers with the first L0 power controller managing first optical components with the optical network, and the second L0 power controller managing second optical components within the optical network.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 28, 2020
    Assignee: Infinera Corporation
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Publication number: 20200153502
    Abstract: An optical device having an amplifier and a controller is described. The amplifier is configured to amplify an optical signal in at least one of the C-Band or the L-Band. The controller includes a processor and a non-transitory computer readable medium. The non-transitory computer readable medium storing computer executable code that when executed by the processor causes the processor to: select a target tilt and gain setting from a plurality of target tilt and gain settings stored in the non-transitory computer readable medium based on the type of fault event message responsive to a fault event message affecting the C-band or the L-Band. The selected and pre-calculated target tilt and gain settings are applied to the amplifier.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 14, 2020
    Inventors: Jonathan M. Buset, Omer F. Yilmaz, Xian Xu, Steve Sanders
  • Publication number: 20200153533
    Abstract: An optical network and a method are described. In the method, an orchestrator of an optical communication system receives an operation to execute, the operation being to activate or deactivate a service within a transmission signal of the optical communication system, the optical communication system having a span and an amplifier coupled to and supplying optical signals into each span. Network status data for each span within the optical communication system is retrieved, and the list of operations is analyzed with the network status data including existing data traffic on the fiber optic line to select a subset of the list of operations to execute that maintains the transmission signal below a bit error rate threshold. The orchestrator issues one or more signals to cause the one or more service within the subset of the list of operations to be activated or deactivated on the optical communication system.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 14, 2020
    Inventors: Omer F. Yilmaz, Jonathan M. Buset, Xian Xu, Changyu Lin, Steve Sanders
  • Publication number: 20190149229
    Abstract: Methods, systems, and optical power controllers are disclosed. Various problems caused by the use of a single L0 power controller in the prior art are addressed by using first and second L0 power controllers with the first L0 power controller managing first optical components with the optical network, and the second L0 power controller managing second optical components within the optical network.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Publication number: 20190149230
    Abstract: An optical network is described that has a first ROADM node, a second ROADM node, and an optical transmission line establishing optical communication between the first ROADM node and the second ROADM node. The optical transmission line including an in-line amplifier node having a total input power and a total output power. The in-line amplifier node has a first monitoring tool configured to measure input optical power of the in-line amplifier node, and a second monitoring tool configured to measure output optical power of the in-line amplifier node. A software defined L0 network controller has circuitry configured to receive the optical power measured by the first and second monitoring tools from the in-line amplifier node, and to configure at least one of a gain and a gain tilt of the in-line amplifier node.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Publication number: 20190123817
    Abstract: Methods, systems, and optical power controllers are disclosed. Various problems caused by the use of a single L0 power controller in the prior art are addressed by using first and second L0 power controllers with the first L0 power controller managing first optical components with the optical network, and the second L0 power controller managing second optical components within the optical network.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Publication number: 20190109638
    Abstract: Methods, systems, and optical nodes are disclosed. The problems caused by the time-consuming process of serial activation of optical nodes in a restore path are addressed by utilizing a controller that controls all optical nodes in a restore path, in a parallel fashion, for faster restoration of the restore path.
    Type: Application
    Filed: February 2, 2018
    Publication date: April 11, 2019
    Inventors: Omer F. Yilmaz, Stephane St-Laurent, Steve Sanders, Matthew L. Mitchell
  • Patent number: 8976445
    Abstract: Methods, systems and devices implement optical tapped delay lines. In one aspect, a device includes an optical tapped delay (TDL) including a wavelength conversion element, and a dispersive element, coupled with the wavelength conversion element, to impose a relative delay to an optical signal. The optical TDL can include a nonlinear element to combine signals in a phase coherent manner. The wavelength conversion element can include an optical nonlinear device such as a periodically poled lithium niobate (PPLN) or a highly nonlinear fiber (HNLF) with a high nonlinear coefficient and a low dispersion slope to effect four-wave mixing (FWM). The dispersive element can have a low dispersion slope, and the delays effected by the optical TDL can be tunable.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 10, 2015
    Assignee: University of Southern California
    Inventors: Alan E. Willner, Mohammad R. Chitgarha, Salman Khaleghi, Omer F. Yilmaz