Patents by Inventor Omid Foroudi

Omid Foroudi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11262782
    Abstract: An example current mirror arrangement includes a current mirror circuit, configured to receive an input current signal at an input transistor Q1 and output a mirrored signal at an output transistor Q2. The arrangement further includes a semi-cascoding circuit that includes transistors Q3, Q4, and a two-terminal passive network. The transistor Q3 is coupled to, and forms a cascode with, the output transistor Q2. The transistor Q4 is coupled to the transistor Q3. The base/gate of the transistor Q3 is coupled to a bias voltage Vref, and the base/gate of the transistor Q4 is coupled to a bias voltage Vref1 via the two-terminal passive network. Nonlinearity of the output current from such a current mirror arrangement may be reduced by selecting appropriate impedance of the two-terminal passive network and selecting appropriate bias voltages Vref and Vref1.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 1, 2022
    Assignee: ANALOG DEVICES, INC.
    Inventors: Devrim Aksin, Omid Foroudi
  • Patent number: 11188112
    Abstract: An example current mirror arrangement includes a current mirror circuit, configured to receive an input current signal at an input transistor Q1 and output a mirrored signal at an output transistor Q2. The arrangement further includes a buffer amplifier circuit, having an input coupled to Q1 and an output coupled to Q2. The offset of the buffer amplifier circuit can be adjusted by including circuitry for an input or an output side offset adjustment or by implementing the buffer amplifier circuit as a diamond stage with individually controlled current sources for each of the transistors of the diamond stage. Providing an adjustable offset buffer in a current mirror arrangement may advantageously allow benefiting from the use of a buffer outside of a feedback loop of a current mirror, while being able to reduce the buffer offset due to mismatch between master and slave sides of the current mirror circuit.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 30, 2021
    Assignee: ANALOG DEVICES, INC.
    Inventors: Devrim Aksin, Omid Foroudi
  • Publication number: 20210341959
    Abstract: An example current mirror arrangement includes a current mirror circuit, configured to receive an input current signal at an input transistor Q1 and output a mirrored signal at an output transistor Q2. The arrangement further includes a semi-cascoding circuit that includes transistors Q3, Q4, and a two-terminal passive network. The transistor Q3 is coupled to, and forms a cascode with, the output transistor Q2. The transistor Q4 is coupled to the transistor Q3. The base/gate of the transistor Q3 is coupled to a bias voltage Vref, and the base/gate of the transistor Q4 is coupled to a bias voltage Vref1 via the two-terminal passive network. Nonlinearity of the output current from such a current mirror arrangement may be reduced by selecting appropriate impedance of the two-terminal passive network and selecting appropriate bias voltages Vref and Vref1.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 4, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Devrim AKSIN, Omid FOROUDI
  • Publication number: 20210303018
    Abstract: An example current mirror arrangement includes a current mirror circuit, configured to receive an input current signal at an input transistor Q1 and output a mirrored signal at an output transistor Q2. The arrangement further includes a buffer amplifier circuit, having an input coupled to Q1 and an output coupled to Q2. The offset of the buffer amplifier circuit can be adjusted by including circuitry for an input or an output side offset adjustment or by implementing the buffer amplifier circuit as a diamond stage with individually controlled current sources for each of the transistors of the diamond stage. Providing an adjustable offset buffer in a current mirror arrangement may advantageously allow benefiting from the use of a buffer outside of a feedback loop of a current mirror, while being able to reduce the buffer offset due to mismatch between master and slave sides of the current mirror circuit.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Analog Devices, Inc.
    Inventors: Devrim AKSIN, Omid FOROUDI
  • Patent number: 11106233
    Abstract: An example current mirror arrangement includes a current mirror circuit having an input transistor and an output transistor, where the base/gate terminal of the input transistor is coupled to its collector/drain terminal via a transistor matrix that includes a plurality of transistors. Transistors of the transistor matrix, together with the input transistor, form two parallel feedback loops, such that the input transistor is part of both loops. The first loop is a fast, low-gain loop, while the second loop is a slow, high-gain loop. At lower input frequencies, the high-gain loop may properly bias and accurately generate voltage at the base/gate terminal of the input transistor, while at higher input frequencies the fast loop may significantly extend the linear operating frequency band. Consequently, a current mirror arrangement with improvements in terms of linearity and signal bandwidth may be realized.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: August 31, 2021
    Assignee: ANALOG DEVICES, INC.
    Inventors: Devrim Aksin, Omid Foroudi
  • Patent number: 10895887
    Abstract: An example current mirror arrangement includes a first portion and a second portion, each of which includes a current mirror having transistors Q1 and Q2, a buffer amplifier that has an input coupled to a base/gate terminal of Q1 and an output coupled to a base/gate terminal of Q2, a master resistor coupled to an emitter/source terminal of Q1, and a slave resistor coupled to an emitter/source terminal of Q2. Furthermore, the slave resistor of the first portion is coupled to the slave resistor of the second portion. Providing additional resistors on master and slave sides of a current mirror arrangement may advantageously allow benefiting from the use of buffers outside of a feedback loop of a current mirror while reducing the sensitivity of the current mirror arrangement to buffer offsets.
    Type: Grant
    Filed: December 21, 2019
    Date of Patent: January 19, 2021
    Assignee: ANALOG DEVICES, INC.
    Inventors: Devrim Aksin, Omid Foroudi
  • Patent number: 10845839
    Abstract: A current mirror arrangement with a current mirror and a double-base current circulator is disclosed. The current mirror is configured to receive an input current (IIN) and generate a mirrored current (IM), where IM=K*IIN. The current circulator, coupled to the current mirror, is configured to convey the mirrored current to an output node of the arrangement. The current circulator is a double-base current circulator and includes a first branch configured to receive a first branch current (I1b), where I1b=m*IM, where m is a positive number less than 1, and further includes a second branch configured to receive a second branch current (I2b), where I2b=(1?m)*IM. The first branch includes a cascode of transistors Q3 and Q5, configured to provide I1b to an output node. The second branch includes a transistor Q4 configured to provide I2b to the output node, where it is combined with I1b.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: November 24, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Devrim Aksin, Omid Foroudi
  • Patent number: 10374602
    Abstract: Techniques for linearizing a field effect transistor (FET) are provided. In an example, a method can include averaging a voltage at a drain node of the FET and a voltage at a source node of the FET to provide an average voltage, and applying the average voltage to a gate node of the FET.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: August 6, 2019
    Assignee: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Publication number: 20190229725
    Abstract: Techniques for linearizing a field effect transistor (FET) are provided. In an example, a method can include averaging a voltage at a drain node of the FET and a voltage at a source node of the FET to provide an average voltage, and applying the average voltage to a gate node of the FET.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventor: Omid Foroudi
  • Patent number: 9048801
    Abstract: Apparatus and methods for buffer linearization are provided. In certain implementations, an amplifier includes a buffer circuit and a gain circuit. The buffer circuit includes a buffer transistor pair used to buffer a differential input signal to generate a differential buffered signal. Additionally, the gain circuit includes a gain transistor pair configured to amplify the buffered differential signal to generate an amplified differential signal. The buffer circuit can include a linearization transistor pair configured to decrease the buffer circuit's output impedance and to provide feedback that reduces changes in the voltage of the differential buffered signal in response to displacement currents associated with the CJC or CGD capacitances of the gain transistor pair.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: June 2, 2015
    Assignee: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Publication number: 20140333381
    Abstract: Apparatus and methods for buffer linearization are provided. In certain implementations, an amplifier includes a buffer circuit and a gain circuit. The buffer circuit includes a buffer transistor pair used to buffer a differential input signal to generate a differential buffered signal. Additionally, the gain circuit includes a gain transistor pair configured to amplify the buffered differential signal to generate an amplified differential signal. The buffer circuit can include a linearization transistor pair configured to decrease the buffer circuit's output impedance and to provide feedback that reduces changes in the voltage of the differential buffered signal in response to displacement currents associated with the CJC or CGD capacitances of the gain transistor pair.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventor: Omid Foroudi
  • Patent number: 8791758
    Abstract: Apparatus and methods for buffer linearization are provided. In certain implementations, an amplifier includes a buffer circuit and a gain circuit. The buffer circuit includes a buffer transistor pair used to buffer a differential input signal to generate a differential buffered signal. Additionally, the gain circuit includes a gain transistor pair configured to amplify the buffered differential signal to generate an amplified differential signal. The buffer circuit can include a linearization transistor pair configured to decrease the buffer circuit's output impedance and to provide feedback that reduces changes in the voltage of the differential buffered signal in response to displacement currents associated with the CJC or CGD capacitances of the gain transistor pair.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: July 29, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Patent number: 8547156
    Abstract: Apparatus and methods are disclosed related to using one or more field effect transistors as a resistor. One such apparatus can include a field effect transistor (FET), averaging resistors and a bidirectional current source. The averaging resistors can apply an average of a voltage at the source of the FET and a voltage at the drain of the FET to the gate of the field effect transistor. The bidirectional current source can turn the FET on and off. The FET can operate in the ohmic region when on. Such an apparatus can improve the linearity of the FET as a resistor, for example, at lower frequencies near or at direct current (DC). In some implementations, the apparatus can include one or more current sources to remove an offset introduced by the bidirectional current source at the source and/or the drain of the FET.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 1, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Publication number: 20130187683
    Abstract: Apparatus and methods are disclosed related to using one or more field effect transistors as a resistor. One such apparatus can include a field effect transistor (FET), averaging resistors and a bidirectional current source. The averaging resistors can apply an average of a voltage at the source of the FET and a voltage at the drain of the FET to the gate of the field effect transistor. The bidirectional current source can turn the FET on and off. The FET can operate in the ohmic region when on. Such an apparatus can improve the linearity of the FET as a resistor, for example, at lower frequencies near or at direct current (DC). In some implementations, the apparatus can include one or more current sources to remove an offset introduced by the bidirectional current source at the source and/or the drain of the FET.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Patent number: 8400205
    Abstract: Apparatus and methods are disclosed related to using one or more field effect transistors as a resistor. One such apparatus includes a field effect transistor with a first series circuit in parallel with the gate and the source of the field effect transistor and a second series circuit in parallel with the gate and the drain of the field effect transistor. Each series circuit can include a capacitor and a switch in series with the capacitor. The switch can be configured to be on when the field effect transistor is on, and to be off when the field effect transistor is off. This can improve the linearity of the field effect transistor as a resistor. In some implementations, the apparatus can further include an isolation resistor having a first end and a second end, the first end electrically coupled to the gate of the field effect transistor.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: March 19, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Omid Foroudi
  • Publication number: 20120256674
    Abstract: Apparatus and methods are disclosed related to using one or more field effect transistors as a resistor. One such apparatus includes a field effect transistor with a first series circuit in parallel with the gate and the source of the field effect transistor and a second series circuit in parallel with the gate and the drain of the field effect transistor. Each series circuit can include a capacitor and a switch in series with the capacitor. The switch can be configured to be on when the field effect transistor is on, and to be off when the field effect transistor is off. This can improve the linearity of the field effect transistor as a resistor. In some implementations, the apparatus can further include an isolation resistor having a first end and a second end, the first end electrically coupled to the gate of the field effect transistor.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Applicant: Analog Devices, Inc.
    Inventor: Omid Foroudi