Patents by Inventor Oral Buyukozturk

Oral Buyukozturk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220017716
    Abstract: This disclosure provides electron beam irradiated products and methods thereof. In particular, the invention is directed to a products and methods that comprise an electron beam irradiated component and a second component. The electron beam irradiated component may be plastic. The second component may be a building material or construction material. The invention is also directed to methods of manufacturing a modified polymer material with an electron-beam. Methods comprise irradiating the polymer particles of the material by dosing with electron beam radiation to produce a modified polymer material comprising irradiated polymer particles.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 20, 2022
    Inventors: Kaveh Bakhtari, Oral Buyukozturk, Michael Philip Short
  • Patent number: 10997329
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: May 4, 2021
    Assignees: Massachusetts Institute of Technology, Shell Oil Company
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericus Johannes Henricus Smit, Sergio Daniel Kapusta
  • Patent number: 10947158
    Abstract: Devices, systems, and methods of the present disclosure are generally directed to building material including particles of a polymer in an irradiated form, a cement including calcium oxide, and at least one additive including silicon dioxide. In cement paste formed from a mixture of these components, the polymer in the irradiated form may decrease porosity as compared to porosity of cement paste formed without the polymer, and a combination of the silicon dioxide and the calcium oxide may form high-density phases in the cement paste. With these characteristics, such cement paste may exhibit at least the same compressive strength as cement paste formed from the cement by itself. Thus, in certain instances, the particles of the polymer may displace a portion of the cement in a manner that maintains compressive strength while facilitating reduction of greenhouse gas emissions associated with cement paste formation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: March 16, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Oral Buyukozturk, Michael Philip Short, Carolyn E. Schaefer, Michael Ortega, Anne E. White, Kunal Kupwade-Patil
  • Publication number: 20190382309
    Abstract: Devices, systems, and methods of the present disclosure are generally directed to building material including particles of a polymer in an irradiated form, a cement including calcium oxide, and at least one additive including silicon dioxide. In cement paste formed from a mixture of these components, the polymer in the irradiated form may decrease porosity as compared to porosity of cement paste formed without the polymer, and a combination of the silicon dioxide and the calcium oxide may form high-density phases in the cement paste. With these characteristics, such cement paste may exhibit at least the same compressive strength as cement paste formed from the cement by itself. Thus, in certain instances, the particles of the polymer may displace a portion of the cement in a manner that maintains compressive strength while facilitating reduction of greenhouse gas emissions associated with cement paste formation.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Oral Buyukozturk, Michael Philip Short, Carolyn E. Schaefer, Michael Ortega, Anne E. White, Kunal Kupwade-Patil
  • Patent number: 10380745
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 13, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Publication number: 20190035086
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 31, 2019
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Patent number: 10037609
    Abstract: A method and corresponding device for identifying operational mode shapes of an object in a video stream includes extracting pixel-wise Eulerian motion signals of an object from an undercomplete representation of frames within a video stream. Pixel-wise Eulerian motion signals are downselected to produce a representative set of Eulerian motion signals of the object. Operational mode shapes of the object are identified based on the representative set. Resonant frequencies can also be identified. Embodiments enable vibrational characteristics of objects to be determined using video in near real time.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 31, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Justin Gejune Chen, Oral Buyukozturk, William T. Freeman, Frederic Pierre Durand, Myers Abraham Davis, Neal Wadhwa
  • Publication number: 20180061063
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Application
    Filed: February 28, 2017
    Publication date: March 1, 2018
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Publication number: 20170220718
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericks Johannes Smit, Sergio Daniel Kapusta
  • Publication number: 20170221216
    Abstract: A method and corresponding device for identifying operational mode shapes of an object in a video stream includes extracting pixel-wise Eulerian motion signals of an object from an undercomplete representation of frames within a video stream. Pixel-wise Eulerian motion signals are downselected to produce a representative set of Eulerian motion signals of the object. Operational mode shapes of the object are identified based on the representative set. Resonant frequencies can also be identified. Embodiments enable vibrational characteristics of objects to be determined using video in near real time.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Justin Gejune Chen, Oral Buyukozturk, William T. Freeman, Frederic Pierre Durand, Myers Abraham Davis, Neal Wadhwa
  • Patent number: 8244485
    Abstract: A non-contact, far-field radar nondestructive testing (NDT) method is disclosed that is capable of detecting at least one of defects, damages, and reinforcement conditions in near-surface region of multi-layer systems using monostatic inverse synthetic aperture radar (ISAR) measurements and applicable to various types of structural elements. The method includes the steps of conducting far-field monostatic ISAR measurements, executing an imaging algorithm, and executing a progressive image focusing algorithm.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 14, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Oral Buyukozturk, Tzu-Yang Yu, Dennis Blejer
  • Publication number: 20110169687
    Abstract: A non-contact, far-field radar nondestructive testing (NDT) method is disclosed that is capable of detecting at least one of defects, damages, and reinforcement conditions in near-surface region of multi-layer systems using monostatic inverse synthetic aperture radar (ISAR) measurements and applicable to various types of structural elements. The method includes the steps of conducting far-field monostatic ISAR measurements, executing an imaging algorithm, and executing a progressive image focusing algorithm.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Oral Buyukozturk, Tzu-Yang Yu, Dennis Blejer
  • Patent number: 7937229
    Abstract: A non-contact, far-field radar nondestructive testing (NDT) method is disclosed that is capable of detecting at least one of defects, damages, and reinforcement conditions in near-surface region of multi-layer systems using monostatic inverse synthetic aperture radar (ISAR) measurements and applicable to various types of structural elements. The method includes the steps of conducting far-field monostatic ISAR measurements, executing an imaging algorithm, and executing a progressive image focusing algorithm.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: May 3, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Oral Buyukozturk, Tzu-Yang Yu, Dennis Blejer
  • Publication number: 20090222221
    Abstract: A non-contact, far-field radar nondestructive testing (NDT) method is disclosed that is capable of detecting at least one of defects, damages, and reinforcement conditions in near-surface region of multi-layer systems using monostatic inverse synthetic aperture radar (ISAR) measurements and applicable to various types of structural elements. The method includes the steps of conducting far-field monostatic ISAR measurements, executing an imaging algorithm, and executing a progressive image focusing algorithm.
    Type: Application
    Filed: May 27, 2008
    Publication date: September 3, 2009
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Oral Buyukozturk, Tzu-Yang Yu, Dennis Blejer