Patents by Inventor Oranna Yauw

Oranna Yauw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8360304
    Abstract: A method of operating a wire bonding machine is provided. The method includes the steps of: (1) providing a workpiece secured in a bonding position by a device clamp of a wire bonding machine; (2) raising the device clamp to a first height above the workpiece, the device clamp remaining at the first height for a first predetermined period of time; and (3) raising the device clamp to a second height above the workpiece after step (2), the second height being further away from the workpiece than the first height.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Kulicke and Soffa Industries Inc.
    Inventors: Sung Sig Kang, Hing Kuong Wong, Samuel Capistrano, III, Abdul Shukor Mohd Salleh, Wun Man Oranna Yauw
  • Publication number: 20120104075
    Abstract: A method of operating a wire bonding machine is provided. The method includes the steps of: (1) providing a workpiece secured in a bonding position by a device clamp of a wire bonding machine; (2) raising the device clamp to a first height above the workpiece, the device clamp remaining at the first height for a first predetermined period of time; and (3) raising the device clamp to a second height above the workpiece after step (2), the second height being further away from the workpiece than the first height.
    Type: Application
    Filed: July 19, 2010
    Publication date: May 3, 2012
    Applicant: KULICKE AND SOFFA INDUSTRIES, INC.
    Inventors: Sung SIK Kang, Hing Kuong Wong, Samuel Capistrano, III, Mohd Salleh Abdul Shukor, Oranna Yauw
  • Patent number: 6933243
    Abstract: Methods for etching electrodes formed directly on gate dielectrics are provided. In one aspect, an etch process is provided which includes a main etch step, a soft landing step, and an over etch step. In another aspect, a method is described which includes performing a main etch having good etch rate uniformity and good profile uniformity, performing a soft landing step in which a metal/metal barrier interface can be determined, and performing an over etch step to selectively remove the metal barrier without negatively affecting the dielectric. In another aspect, a method is provided which includes a first non-selective etch chemistry for bulk removal of electrode material, a second intermediate selective etch chemistry with end point capability, and then a selective etch chemistry to stop on the gate dielectric.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: August 23, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Meihua Shen, Yan Du, Nicolas Gani, Oranna Yauw, Hakeem M. Oluseyi
  • Patent number: 6797188
    Abstract: A method of etching a silicon-containing material in a substrate comprises placing the substrate in a process chamber and exposing the substrate to an energized gas comprising fluorine-containing gas, chlorine-containing gas and sidewall-passivation gas. The silicon-containing material on the substrate comprises regions having different compositions, and the volumetric flow ratio of the fluorine-containing gas, chlorine-containing gas, and sidewall-passivation gas is selected to etch the compositionally different regions at substantially similar etch rates.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: September 28, 2004
    Inventors: Meihua Shen, Wei-nan Jiang, Oranna Yauw, Jeffrey Chinn
  • Publication number: 20030148622
    Abstract: Methods for etching electrodes formed directly on gate dielectrics are provided. In one aspect, an etch process is provided which includes a main etch step, a soft landing step, and an over etch step. In another aspect, a method is described which includes performing a main etch having good etch rate uniformity and good profile uniformity, performing a soft landing step in which a metal/metal barrier interface can be determined, and performing an over etch step to selectively remove the metal barrier without negatively affecting the dielectric. In another aspect, a method is provided which includes a first non-selective etch chemistry for bulk removal of electrode material, a second intermediate selective etch chemistry with end point capability, and then a selective etch chemistry to stop on the gate dielectric.
    Type: Application
    Filed: October 23, 2002
    Publication date: August 7, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Meihua Shen, Yan Du, Nicolas Gani, Oranna Yauw, Hakeem M. Oluseyi
  • Patent number: 6599437
    Abstract: A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: July 29, 2003
    Assignee: Applied Materials Inc.
    Inventors: Oranna Yauw, Meihua Shen, Nicolas Gani, Jeffrey D. Chinn
  • Patent number: 6551941
    Abstract: A method of forming a notch silicon-containing gate structure is disclosed. This method is particularly useful in forming a T-shaped silicon-containing gate structure. A silicon-containing gate layer is etched to a first desired depth using a plasma generated from a first source gas. During the etch, etch byproducts deposit on upper sidewalls of the silicon-containing gate layer which are exposed during etching, forming a first passivation layer which protects the upper silicon-containing gate layer sidewalls from etching during subsequent processing steps. A relatively high substrate bias power is used during this first etch step to ensure that the passivation layer adheres properly to the upper silicon-containing gate sidewalls.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: April 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Chan-syun David Yang, Meihua Shen, Oranna Yauw, Jeffrey D. Chinn
  • Publication number: 20030029835
    Abstract: A two-step method of etching an organic coating layer, in particular, an organic antireflection coating (ARC) layer, is disclosed. During the main etch step, the organic coating layer is etched using a plasma generated from a first source gas which includes a fluorocarbon and a non-carbon-containing, halogen-comprising gas. Etching is performed using a first substrate bias power. During the overetch step, residual organic coating material remaining after the main etch step is removed by exposing the substrate to a plasma generated from a second source gas which includes a chlorine-containing gas and an oxygen-containing gas, and which does not include a polymer-forming gas. The overetch step is performed using a second substrate bias power which is less than the first substrate bias power.
    Type: Application
    Filed: March 20, 2001
    Publication date: February 13, 2003
    Inventors: Oranna Yauw, Meihua Shen, Nicolas Gani, Jeffrey D. Chinn
  • Publication number: 20020151183
    Abstract: A method of forming a notched silicon-containing gate structure is disclosed. This method is particularly useful in forming a T-shaped silicon-containing gate structure. A silicon-containing gate layer is etched to a first desired depth using a plasma generated from a first source gas. During the etch, etch byproducts deposit on upper sidewalls of the silicon-containing gate layer which are exposed during etching, forming a first passivation layer which protects the upper silicon-containing gate layer sidewalls from etching during subsequent processing steps. A relatively high substrate bias power is used during this first etch step to ensure that the passivation layer adheres properly to the upper silicon-containing gate sidewalls.
    Type: Application
    Filed: February 22, 2001
    Publication date: October 17, 2002
    Inventors: Chan-syun David Yang, Meihua Shen, Oranna Yauw, Jeffrey D. Chinn