Patents by Inventor Oray O. Cellek

Oray O. Cellek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107782
    Abstract: A sensor module includes a silicon substrate. A set of isolation walls defines, in the silicon substrate, an array of silicon-based image sensor pixels and an array of cavities. An infrared (IR)-sensitive material in the array of cavities forms an array of IR sensor pixels in a same focal plane as the array of silicon-based image sensor pixels.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Inventors: Hong Wei Lee, Oray O. Cellek
  • Publication number: 20240079440
    Abstract: A multispectral sensing device includes a first die, including silicon, which is patterned to define a first array of sensor elements, which output first electrical signals in response to optical radiation that is incident on the device in a band of wavelengths less than 1000 nm that is incident on the front side of the first die. A second die has its first side bonded to the back side of the first die and includes a photosensitive material and is patterned to define a second array of sensor elements, which output second electrical signals in response to the optical radiation that is incident on the device in a second band of wavelengths greater than 1000 nm that passes through the first die and is incident on the first side of the second die. Readout circuitry reads the first electrical signals and the second electrical signals serially out of the device.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 7, 2024
    Inventors: Oray O. Cellek, Fei Tan, Gershon Rosenblum, Hong Wei Lee, Cheng-Ying Tsai, Jae Y. Park, Christophe Verove, John L Orlowski, Siddharth Joshi, Xiangli Li, David Coulon, Xiaofeng Fan, Keith Lyon, Nicolas Hotellier, Arnaud Laflaquière
  • Patent number: 11877071
    Abstract: Disclosed herein are cameras and image sensors, and electronic devices containing them, having pixel arrays operable both for obtaining images and detecting flicker in ambient light. For flicker detection, such as prior to image capture, light-generated current from a set of pixels of the pixel array is received at a transimpedance amplifier (TIA) that is formed in a common semiconductor substrate with the pixel array. An output signal of the TIA is digitized and signal processed to detect the flicker in the ambient light. Also disclosed are image sensors having pixel arrays with an embedded modulated light source. The modulated light source may be used for proximity detection, either by time-of-flight or intensity variation of reflected light.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: January 16, 2024
    Assignee: Apple Inc.
    Inventors: John L. Orlowski, Ritu Raj Singh, Oray O. Cellek
  • Publication number: 20220320174
    Abstract: Disclosed herein are global shutter image sensors and methods of operating such image sensors. An image sensor includes a semiconductor wafer having a light receiving surface opposite an electrical connection surface; an oxide extending from the light receiving surface toward the electrical connection surface and at least partially surrounding a pixel region; a photodiode disposed within the pixel region; and a set of storage nodes disposed under the photodiode, between the photodiode and the electrical connection surface. The set of storage nodes comprises a first storage node and a second storage node. The storage nodes may be disposed vertically beneath the photodiode, or side by side.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 6, 2022
    Inventors: Dajiang Yang, Hong Wei Lee, Xiaofeng Fan, Oray O. Cellek, Xiangli Li, Kai Shen
  • Publication number: 20220068900
    Abstract: A micro-light-emitting diode (LED) display includes a number of micro-LED pixel elements and multiple optical sensors integrated with the micro-LED pixel elements. A transparent conductor layer is disposed over the micro-LED pixel elements and optical sensors.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 3, 2022
    Inventors: Xiaofan NIU, Sunggu KANG, Mohammad YEKE YAZDANDOOST, Giovanni GOZZINI, Xia LI, Oray O. CELLEK, Sandeep CHALASANI, Steven E. MOLESA, Jaein CHOI
  • Patent number: 11239267
    Abstract: Imaging apparatus (20) includes a photosensitive medium (22) and a bias electrode (32), which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits (26) is formed on a semiconductor substrate (30). Each pixel circuit includes a pixel electrode (24) coupled to collect the charge carriers from the photosensitive medium; a readout circuit (75) configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate (48) coupled between the pixel electrode and the readout circuit; and a shutter gate (46) coupled in parallel with the skimming gate between a node (74) in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 1, 2022
    Assignee: APPLE INC.
    Inventors: Gennadiy A Agranov, Oray O. Cellek, QingFei Chen, Xiangli Li
  • Publication number: 20200412980
    Abstract: A sensor stack is described. The sensor stack includes first and second electromagnetic radiation sensors. The first electromagnetic radiation sensor has a high quantum efficiency for converting a first range of electromagnetic radiation wavelengths into a first set of electrical signals. The second electromagnetic radiation sensor is positioned in a field of view of the first electromagnetic radiation sensor and has a high quantum efficiency for converting a second range of electromagnetic radiation wavelengths into a second set of electrical signals and a low quantum efficiency for converting the first range of electromagnetic radiation wavelengths into the second set of electrical signals. The first range of wavelengths does not overlap the second range of wavelengths, and the second electromagnetic radiation sensor is at least partially transmissive to the first range of electromagnetic radiation wavelengths.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 31, 2020
    Inventors: Gennadiy A. Agranov, Zachary M. Beiley, Andras G. Pattantyus-Abraham, Oray O. Cellek, Xiaofeng Fan, Gershon Rosenblum, Xiangli Li, Emanuele Mandelli, Bernhard Buettgen, Yuchuan Shao
  • Publication number: 20200304743
    Abstract: Imaging apparatus (20) includes a photosensitive medium (22) and a bias electrode (32), which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits (26) is formed on a semiconductor substrate (30). Each pixel circuit includes a pixel electrode (24) coupled to collect the charge carriers from the photosensitive medium; a readout circuit (75) configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate (48) coupled between the pixel electrode and the readout circuit; and a shutter gate (46) coupled in parallel with the skimming gate between a node (74) in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Application
    Filed: April 2, 2018
    Publication date: September 24, 2020
    Inventors: Gennadiy A Agranov, Oray O. Cellek, QingFei Chen, Xiangli Li
  • Patent number: 10192911
    Abstract: Imaging apparatus includes a photosensitive medium and a bias electrode, which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits is formed on a semiconductor substrate. Each pixel circuit includes a pixel electrode coupled to collect the charge carriers from the photosensitive medium; a readout circuit configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate coupled between the pixel electrode and the readout circuit; and a shutter gate coupled in parallel with the skimming gate between a node in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 29, 2019
    Assignee: APPLE INC.
    Inventors: Gennadiy A. Agranov, QingFei Chen, Oray O. Cellek, Xiangli Li
  • Publication number: 20180331138
    Abstract: Imaging apparatus includes a photosensitive medium and a bias electrode, which is at least partially transparent, overlying the photosensitive medium. An array of pixel circuits is formed on a semiconductor substrate. Each pixel circuit includes a pixel electrode coupled to collect the charge carriers from the photosensitive medium; a readout circuit configured to output a signal indicative of a quantity of the charge carriers collected by the pixel electrode; a skimming gate coupled between the pixel electrode and the readout circuit; and a shutter gate coupled in parallel with the skimming gate between a node in the pixel circuit and a sink site. The shutter gate and the skimming gate are opened sequentially in each of a sequence of image frames so as to apply a global shutter to the array and then to read out the collected charge carriers via the skimming gate to the readout circuit.
    Type: Application
    Filed: March 29, 2018
    Publication date: November 15, 2018
    Inventors: Gennadiy A. Agranov, QingFei Chen, Oray O. Cellek, Xiangli Li