Patents by Inventor Oren Rosenberg

Oren Rosenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210071179
    Abstract: Described in this disclosure are CRISPRi systems and methods, along with the related compositions and kits, that combine modularity, stable genomic integration, and ease of transfer to diverse bacteria by conjugation. CRISPRi compositions, methods, systems and kits described herein allow for genetic dissection of bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, as well as comprehensive screening for host-microbe interactions. Embodiments of the invention comprise compositions, methods, systems, and kits for CRISPRi-based repression of gene expression in bacteria.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 11, 2021
    Inventors: Jason Peters, Carol Gross, Oren Rosenberg, Neha Prasad
  • Patent number: 10588542
    Abstract: A wearable sensor belt used as a reference frame for determining a location of an in-vivo device in the gastrointestinal (GI) tract, the belt including N magnetic field generating coils and M magnetic field sensors configured for dynamic calibration of the belt's geometry in order to accommodate for dynamic changes in the shape and/or size of the belt from one subject to another, and for dynamic changes in the shape and/or size of the belt as a result of changes in a subject's posture. A method for localizing an in-vivo device swallowed by a subject using a sensor belt is also described.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: March 17, 2020
    Assignee: GIVEN IMAGING LTD.
    Inventors: Semion Khait, Oren Rosenberg
  • Patent number: 9980628
    Abstract: A control circuit for controlling a state of a switching circuit may include a first unit to sense and interpret a wireless signal or physical parameter as an “on” signal to transition the switching circuit to the “on” state, or as an “off” signal to transition the switching circuit to the “off” state, and to transfer a first digital signal or logic value and/or a second digital signal or logic value, which may respectively or combinatorially represent the “on” signal or the “off” signal, to a second unit via a first output and/or a second output of the first unit, respectively. The second unit may force a control input of the switching circuit to a logic value which is a function of the first digital signal or value and/or second digital signal or value and congruent with the state to which the switching circuit is to be transitioned.
    Type: Grant
    Filed: December 8, 2013
    Date of Patent: May 29, 2018
    Assignee: Given Imaging Ltd.
    Inventors: Semion Khait, Oren Rosenberg
  • Patent number: 9949666
    Abstract: A swallowable in-vivo device contains a movement detection unit that includes a movement sensing unit, a frequency analyzing unit (FAU) and a time analyzing unit (TAU). The movement sensing unit senses movements of the in-vivo device relative to a non-stationary three-dimensional reference frame, and outputs a movement signal. The frequency analyzing unit may analyze the movement signal spectrally to detect a potential command-invoking movement, and the time analyzing unit may analyze the potential CIM temporally, possibly in conjunction with a series of other movement events, to determine whether the potential CIM is a genuine CIM. If the potential CIM is determined to be a genuine CIM, the in-vivo device may execute a predetermined command associated with the CIM. Otherwise, the in-vivo device may refrain from executing a CIM-related command. A PCB including the movement detection unit and a processor for processing their output is provided for the vivo sensing device.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: April 24, 2018
    Assignee: GIVEN IMAGING LTD.
    Inventors: Oren Rosenberg, Semion Khait
  • Publication number: 20170202479
    Abstract: A wearable sensor belt used as a reference frame for determining a location of an in-vivo device in the gastrointestinal (GI) tract, the belt including N magnetic field generating coils and M magnetic field sensors configured for dynamic calibration of the belt's geometry in order to accommodate for dynamic changes in the shape and/or size of the belt from one subject to another, and for dynamic changes in the shape and/or size of the belt as a result of changes in a subject's posture. A method for localizing an in-vivo device swallowed by a subject using a sensor belt is also described.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 20, 2017
    Inventors: Semion KHAIT, Oren ROSENBERG
  • Patent number: 9526080
    Abstract: An in-vivo device may allocate a sensing window in a work cycle for sensing and processing localization signals to determine the location/orientation of the in-vivo device. The in-vivo device may use a timing unit to schedule transmission of data frames and the sensing of the localization signals relative to a reference time embedded in work cycles. The timing unit may produce a clock signal based on which the in-vivo device may measure time specifics, which define the sensing window, relative to the reference time. A receiver may use data embedded in data frames to restore the clock signal and the reference time, and, from them, and using identical or similar time specifics, generate a synchronization signal for a localization signals source (LSS) to enable the LSS to generate localization signals in synchronization with the sensing windows.
    Type: Grant
    Filed: March 18, 2012
    Date of Patent: December 20, 2016
    Assignee: GIVEN IMAGING LTD.
    Inventors: Semion Khait, Oren Rosenberg
  • Publication number: 20150335264
    Abstract: A swallowable in-vivo device contains a movement detection unit that includes a movement sensing unit, a frequency analyzing unit (FAU) and a time analyzing unit (TAU). The movement sensing unit senses movements of the in-vivo device relative to a non-stationary three-dimensional reference frame, and outputs a movement signal. The frequency analyzing unit may analyze the movement signal spectrally to detect a potential command-invoking movement, and the time analyzing unit may analyze the potential CIM temporally, possibly in conjunction with a series of other movement events, to determine whether the potential CIM is a genuine CIM. If the potential CIM is determined to be a genuine CIM, the in-vivo device may execute a predetermined command associated with the CIM. Otherwise, the in-vivo device may refrain from executing a CIM-related command. A PCB including the movement detection unit and a processor for processing their output is provided for the vivo sensing device.
    Type: Application
    Filed: February 6, 2014
    Publication date: November 26, 2015
    Inventors: Oren ROSENBERG, Semion KHAIT
  • Publication number: 20150305595
    Abstract: A control circuit for controlling a state of a switching circuit may include a first unit to sense and interpret a wireless signal or physical parameter as an “on” signal to transition the switching circuit to the “on” state, or as an “off” signal to transition the switching circuit to the “off” state, and to transfer a first digital signal or logic value and/or a second digital signal or logic value, which may respectively or combinatorially represent the “on” signal or the “off” signal, to a second unit via a first output and/or a second output of the first unit, respectively. The second unit may force a control input of the switching circuit to a logic value which is a function of the first digital signal or value and/or second digital signal or value and congruent with the state to which the switching circuit is to be transitioned.
    Type: Application
    Filed: December 8, 2013
    Publication date: October 29, 2015
    Applicant: GIVEN IMAGING LTD
    Inventors: Semion KHAIT, Oren ROSENBERG
  • Patent number: 9107604
    Abstract: An electromagnetic localization signal may be sensed by an electromagnetic field sensor in an in-vivo device with an electromagnetic field interference that is superimposed on the electromagnetic localization signal. The electromagnetic field interference may be filtered by outputting, by the electromagnetic field sensor, an alternating signal that represents, or in response to, the electromagnetic localization signal; sampling a first (e.g., positive) portion of the alternating signal during a first sampling window or period to obtain a first set of samples, sampling a second (e.g., negative) portion of the alternating signal during a second sampling window or period to obtain a second set of samples; and calculating a number, NR, from the first and second sets of samples, that approximately represents a substantially interference free electromagnetic localization signal.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: August 18, 2015
    Assignee: GIVEN IMAGING LTD.
    Inventors: Semion Khait, Oren Rosenberg
  • Publication number: 20140003418
    Abstract: An in-vivo device may allocate a sensing window in a work cycle for sensing and processing localization signals to determine the location/orientation of the in-vivo device. The in-vivo device may use a timing unit to schedule transmission of data frames and the sensing of the localization signals relative to a reference time embedded in work cycles. The timing unit may produce a clock signal based on which the in-vivo device may measure time specifics, which define the sensing window, relative to the reference time. A receiver may use data embedded in data frames to restore the clock signal and the reference time, and, from them, and using identical or similar time specifics, generate a synchronization signal for a localization signals source (LSS) to enable the LSS to generate localization signals in synchronization with the sensing windows.
    Type: Application
    Filed: March 18, 2012
    Publication date: January 2, 2014
    Inventors: Semion Khait, Oren Rosenberg