Patents by Inventor Osamu Imaki

Osamu Imaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10001604
    Abstract: A connector-incorporating plug contains a connector to be inserted into and connected to an adapter in a receptacle and is connected to the receptacle. The connector-incorporating plug includes a housing that is located at a back-end side of the connector in a direction of insertion, to hold the connector, a spring pressing the housing in the direction of insertion, a holder that is located in front of a flange portion formed on the housing and that is mounted to the housing, and a shell member. The holder is pressed by the spring through the flange portion to butt against a projection formed on the inner wall of the shell member, and is kept there. The housing is movable with respect to the holder only along a first axis orthogonal to the direction of insertion. The holder is movable with respect to the shell member only along a crossing axis.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: June 19, 2018
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Yuichi Koreeda, Hideto Shimazu, Osamu Imaki, Hideo Sugimoto, Naoki Katagiyama, Masaki Ishiguro, Yasutaka Hiroki
  • Patent number: 9904019
    Abstract: In an optical-connector-incorporating plug accommodating and holding an optical connector in a barrel at a front end thereof and accommodating, in the barrel, an extra length portion of an optical fiber extending from an optical cable to the optical connector, the extra length portion bends as the optical connector is moved toward a back end of the barrel when the optical connector is connected to a mating receptacle; the distance from the position where the optical connector is held to the outer wall of the barrel depends on the direction, among the directions orthogonal to the direction in which the optical connector is moved; and a guide portion guiding the bend of the extra length portion in a direction other than the direction where the distance to the outer wall of the barrel is the shortest is formed in the barrel. The optical-connector-incorporating plug can be reduced in size.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: February 27, 2018
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Yuichi Koreeda, Hideto Shimazu, Osamu Imaki, Hideo Sugimoto, Naoki Katagiyama, Masaki Ishiguro, Yasutaka Hiroki
  • Publication number: 20170276882
    Abstract: A connector-incorporating plug contains a connector to be inserted into and connected to an adapter in a receptacle and is connected to the receptacle. The connector-incorporating plug includes a housing that is located at a back-end side of the connector in a direction of insertion, to hold the connector, a spring pressing the housing in the direction of insertion, a holder that is located in front of a flange portion formed on the housing and that is mounted to the housing, and a shell member. The holder is pressed by the spring through the flange portion to butt against a projection formed on the inner wall of the shell member, and is kept there. The housing is movable with respect to the holder only along a first axis orthogonal to the direction of insertion. The holder is movable with respect to the shell member only along a crossing axis.
    Type: Application
    Filed: May 20, 2015
    Publication date: September 28, 2017
    Applicant: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Yuichi KOREEDA, Hideto SHIMAZU, Osamu IMAKI, Hideo SUGIMOTO, Naoki KATAGIYAMA, Masaki ISHIGURO, Yasutaka HIROKI
  • Publication number: 20170269309
    Abstract: In an optical-connector-incorporating plug accommodating and holding an optical connector in a barrel at a front end thereof and accommodating, in the barrel, an extra length portion of an optical fiber extending from an optical cable to the optical connector, the extra length portion bends as the optical connector is moved toward a back end of the barrel when the optical connector is connected to a mating receptacle; the distance from the position where the optical connector is held to the outer wall of the barrel depends on the direction, among the directions orthogonal to the direction in which the optical connector is moved; and a guide portion guiding the bend of the extra length portion in a direction other than the direction where the distance to the outer wall of the barrel is the shortest is formed in the barrel. The optical-connector-incorporating plug can be reduced in size.
    Type: Application
    Filed: May 29, 2015
    Publication date: September 21, 2017
    Applicant: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Yuichi KOREEDA, Hideto SHIMAZU, Osamu IMAKI, Hideo SUGIMOTO, Naoki KATAGIYAMA, Masaki ISHIGURO, Yasutaka HIROKI
  • Patent number: 9470848
    Abstract: A receptacle has a backward-movable floating mechanism and includes a receptacle-side slider, a first lock mechanism (first ball) functioning to couple and fix the receptacle to a plug, and a second lock mechanism (second ball, indentation) that prevents the backward movement. The plug includes a plug-side slider and an indentation. When the plug is inserted into the receptacle, the plug-side slider is prevented from moving forward by the first ball and only the housing of the plug moves forward. When connection between male and female members is complete, the first ball fits into the indentation and the plug-side slider moves forward to lock the first ball. The receptacle-side slider is pushed backward by the plug-side slider, the second lock mechanism is unlocked and the housing of the receptacle is moved backward by the floating mechanism.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: October 18, 2016
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Osamu Imaki, Hideto Shimazu
  • Patent number: 8956057
    Abstract: An optical fiber connector comprises a ferrule having a rear end, a chuck located rearward of the ferrule, a ring having a front end, and a coil spring. The ring is attached to the chuck so as to surround the chuck. The optical fiber connector holds an optical fiber which is inserted from a rear end of the optical fiber connector. In detail, when the optical fiber is inserted into the optical fiber connector, an end of the optical fiber passes through the chuck to be accommodated in the ferrule. The coil spring presses the ring forward (toward the ferrule) so that the chuck is squeezed to hold the inserted optical fiber. When the ring is moved rearward by a stopper inserted between the rear end of the ferrule and the front end of the ring, the chuck is released to release the optical fiber.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 17, 2015
    Assignees: Japan Aviation Electronics Industry, Limited, Asahi Glass Company, Limited
    Inventors: Osamu Imaki, Hideto Shimazu, Yuji Watanabe, Minoru Sekine
  • Publication number: 20140151999
    Abstract: A receptacle has a backward-movable floating mechanism and includes a receptacle-side slider, a first lock mechanism (first ball) functioning to couple and fix the receptacle to a plug, and a second lock mechanism (second ball, indentation) that prevents the backward movement. The plug includes a plug-side slider and an indentation. When the plug is inserted into the receptacle, the plug-side slider is prevented from moving forward by the first ball and only the housing of the plug moves forward. When connection between male and female members is complete, the first ball fits into the indentation and the plug-side slider moves forward to lock the first ball. The receptacle-side slider is pushed backward by the plug-side slider, the second lock mechanism is unlocked and the housing of the receptacle is moved backward by the floating mechanism.
    Type: Application
    Filed: October 18, 2013
    Publication date: June 5, 2014
    Applicant: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Osamu IMAKI, Hideto SHIMAZU
  • Patent number: 8043882
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 25, 2011
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7973373
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single -crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: July 5, 2011
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7634166
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: December 15, 2009
    Assignee: Japan Aviation Electronics Ind. Ltd.
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Patent number: 7582497
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constricted as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: September 1, 2009
    Assignee: Japan Aviation Electroncis Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7580606
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: August 25, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20090181487
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Application
    Filed: December 5, 2008
    Publication date: July 16, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Publication number: 20090146228
    Abstract: A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 11, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7515783
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constructed as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: April 7, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7505658
    Abstract: An optical fiber device comprising a positioning/fixing substrate has a fiber guide and an optical fiber pressing spring formed in the fiber guide, and an optical fiber stored in the fiber guide. The optical fiber includes an end part having at least one marker groove. The fiber guide is a groove having two side wall surfaces. The optical fiber pressing spring includes a plate spring formed on one of the side wall surfaces in the fiber guide and an edge formed on the plate spring. The plate spring presses the edge to the side of the optical fiber with a fulcrum on one of the side wall surfaces, and the end part of the optical fiber is positioned by aligning the marker groove of the optical fiber with the edge of the optical fiber pressing spring.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: March 17, 2009
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Patent number: 7476948
    Abstract: In a microminiature moving device that has disposed, on a single-crystal silicon substrate, movable elements (a movable rod 46, a movable comb electrode 49, etc.) displaceable in parallel to the substrate surface and stationary parts (a stationary part 40a, etc.), the stationary parts are fixedly secured to the single-crystal silicon substrate 61 with an insulating layer 62 sandwiched therebetween, and depressions 64 are formed in those surface regions of the single-crystal silicon substrate 61 where no stationary parts are present, and the movable parts are positioned above the depressions 64. The depressions 64 form gaps 50 large enough to prevent foreign bodies from causing troubles such as malfunction of the movable parts and shoring.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: January 13, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Patent number: 7476561
    Abstract: In a microminiature moving device that has disposed, on a single-crystal silicon substrate, movable elements (a movable rod 46, a movable comb electrode 49, etc.) displaceable in parallel to the substrate surface and stationary parts (a stationary part 40a, etc.), the stationary parts are fixedly secured to the single-crystal silicon substrate 61 with an insulating layer 62 sandwiched therebetween, and depressions 64 are formed in those surface regions of the single-crystal silicon substrate 61 where no stationary parts are present, and the movable parts are positioned above the depressions 64. The depressions 64 form gaps 50 large enough to prevent foreign bodies from causing troubles such as malfunction of the movable parts and shoring.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: January 13, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Keiichi Mori, Yoshichika Kato, Satoshi Yoshida, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki
  • Publication number: 20090003774
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Application
    Filed: September 2, 2008
    Publication date: January 1, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Publication number: 20090004765
    Abstract: A micro-optic device including a complicate structure and a movable mirror is made to be manufactured in a reduced length of time. A silicon substrate and a single crystal silicon device layer with an intermediate layer of silicon dioxide interposed therebetween defines a substrate on which a layer of mask material is formed and is patterned to form a mask having the same pattern as the configuration of the intended optical device as viewed in plan view. A surface which is to be constricted as a mirror surface is chosen to be in a plane of the silicon crystal. Using the mask, the device layer is vertically etched by a reactive ion dry etching until the intermediate layer is exposed. Subsequently, using KOH solution, a wet etching which is anisotropic to the crystallographic orientation is performed with an etching rate which is on the order of 0.1 ?m/min for a time interval on the order of ten minutes is performed to convert the sidewall surface of the mirror into a smooth crystallographic surface.
    Type: Application
    Filed: February 22, 2008
    Publication date: January 1, 2009
    Applicant: Japan Aviation Electronics Industry Limited
    Inventors: Yoshichika Kato, Satoshi Yoshida, Keiichi Mori, Kenji Kondou, Yoshihiko Hamada, Osamu Imaki