Patents by Inventor Osayuki AKIYAMA

Osayuki AKIYAMA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10066293
    Abstract: A method of operating a filament assisted chemical vapor deposition (FACVD) system. The method includes depositing a film on a substrate in a reactor of the FACVD system. During the depositing, a DC power is supplied to a heater assembly to thermally decompose a film forming material. The method also includes cleaning the heater assembly, or an interior surface of the reactor, or both. During the cleaning, an alternating current is supplied to the heater assembly to energize a cleaning media into a plasma.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: September 4, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Jozef Brcka, Osayuki Akiyama
  • Patent number: 9771266
    Abstract: A method for processing carbon nanotubes includes positioning in a treatment chamber of a carbon nanotube processing apparatus a substrate having multiple carbon nanotubes bundled together and oriented substantially perpendicular to a surface of the substrate, and introducing a microwave into the treatment chamber from a planar antenna having multiple microwave radiation holes such that plasma of an etching gas is generated and that the plasma etches the carbon nanotubes starting from one end of the carbon nanotubes bundled together.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 26, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takashi Matsumoto, Osayuki Akiyama
  • Patent number: 9212420
    Abstract: A chemical vapor deposition (CVD) method for depositing a thin film on a surface of a substrate is described. The CVD method comprises disposing a substrate on a substrate holder in a process chamber, and introducing a process gas to the process chamber, wherein the process gas comprises a chemical precursor. The process gas is exposed to a non-ionizing heat source separate from the substrate holder to cause decomposition of the chemical precursor. A thin film is deposited upon the substrate.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 15, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Eric M. Lee, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Patrick Timothy Hurley, Jacques Faguet, Takashi Matsumoto, Osayuki Akiyama
  • Publication number: 20150291425
    Abstract: A method for processing carbon nanotubes includes positioning in a treatment chamber of a carbon nanotube processing apparatus a substrate having multiple carbon nanotubes bundled together and oriented substantially perpendicular to a surface of the substrate, and introducing a microwave into the treatment chamber from a planar antenna having multiple microwave radiation holes such that plasma of an etching gas is generated and that the plasma etches the carbon nanotubes starting from one end of the carbon nanotubes bundled together.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 15, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takashi MATSUMOTO, Osayuki AKIYAMA
  • Publication number: 20150044390
    Abstract: A method of operating a filament assisted chemical vapor deposition (FACVD) system. The method includes depositing a film on a substrate in a reactor of the FACVD system. During the depositing, a DC power is supplied to a heater assembly to thermally decompose a film forming material. The method also includes cleaning the heater assembly, or an interior surface of the reactor, or both. During the cleaning, an alternating current is supplied to the heater assembly to energize a cleaning media into a plasma.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Jozef Brcka, Osayuki Akiyama
  • Publication number: 20140151334
    Abstract: A method for processing carbon nanotubes includes positioning in a treatment chamber of a carbon nanotube processing apparatus a substrate having multiple carbon nanotubes bundled together and oriented substantially perpendicular to a surface of the substrate, and introducing a microwave into the treatment chamber from a planar antenna having multiple microwave radiation holes such that plasma of an etching gas is generated and that the plasma etches the carbon nanotubes starting from one end of the carbon nanotubes bundled together.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Takashi MATSUMOTO, Osayuki Akiyama
  • Patent number: 8728917
    Abstract: A carbon nanotube forming method including providing a target substrate to be processed, a catalytic metal layer being formed on a surface of the target substrate; producing catalytic fine metal particles whose surfaces are oxidized by action of an oxygen plasma on the catalytic metal layer at a temperature T1; and activating the oxidized surfaces of the catalytic fine metal particles by reducing the oxidized surfaces of the catalytic fine metal particles by action of a hydrogen plasma on the catalytic fine metal particles at a temperature T2 higher than the temperature T1. The method further includes growing a carbon nanotube on the activated catalytic fine metal particles by thermal CVD at a temperature T3.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Matsumoto, Osayuki Akiyama, Kenjiro Koizumi
  • Publication number: 20120220106
    Abstract: A carbon nanotube forming method including providing a target substrate to be processed, a catalytic metal layer being formed on a surface of the target substrate; producing catalytic fine metal particles whose surfaces are oxidized by action of an oxygen plasma on the catalytic metal layer at a temperature T1; and activating the oxidized surfaces of the catalytic fine metal particles by reducing the oxidized surfaces of the catalytic fine metal particles by action of a hydrogen plasma on the catalytic fine metal particles at a temperature T2 higher than the temperature T1. The method further includes growing a carbon nanotube on the activated catalytic fine metal particles by thermal CVD at a temperature T3.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 30, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Takashi MATSUMOTO, Osayuki Akiyama, Kenjiro Koizumi
  • Publication number: 20110232567
    Abstract: A method of operating a filament assisted chemical vapor deposition (FACVD) system. The method includes depositing a film on a substrate in a reactor of the FACVD system. During the depositing, a DC power is supplied to a heater assembly to thermally decompose a film forming material. The method also includes cleaning the heater assembly, or an interior surface of the reactor, or both. During the cleaning, an alternating current is supplied to the heater assembly to energize a cleaning media into a plasma.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jozef Brcka, Osayuki Akiyama
  • Publication number: 20100247803
    Abstract: A chemical vapor deposition (CVD) method for depositing a thin film on a surface of a substrate is described. The CVD method comprises disposing a substrate on a substrate holder in a process chamber, and introducing a process gas to the process chamber, wherein the process gas comprises a chemical precursor. The process gas is exposed to a non-ionizing heat source separate from the substrate holder to cause decomposition of the chemical precursor. A thin film is deposited upon the substrate.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: TOKYO ELECTRON LIMITED, AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Eric M. LEE, Raymond Nicholas VRTIS, Mark Leonard O'NEILL, Patrick Timothy HURLEY, Jacques FAGUET, Takashi MATSUMOTO, Osayuki AKIYAMA