Patents by Inventor Osvaldo Enrico Zambetti

Osvaldo Enrico Zambetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837953
    Abstract: First and second circuit branches are coupled between an input node and ground. Each circuit branch includes a series coupling first-fourth transistors in a current flow path with an output node. A first capacitor is coupled between a first capacitor node and a second capacitor node intermediate the first transistor and the second transistor in the first circuit branch. A second capacitor is coupled between a third capacitor node and a fourth capacitor node intermediate the first transistor and the second transistor in the second circuit branch. An inter-branch circuit block between the first and second branches includes a first inter-branch transistor coupled between the first capacitor node in the first circuit branch and the fourth capacitor node in the second circuit branch and a second inter-branch transistor coupled between the third capacitor node in the second circuit branch and the second capacitor node in the first circuit branch.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 5, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Dago, Alessandro Gasparini, Osvaldo Enrico Zambetti, Salvatore Levantino, Massimo Antonio Ghioni
  • Publication number: 20230344350
    Abstract: A buck-boost converter circuit includes a mode selection circuit that asserts a buck enable signal if an input voltage is higher than a lower threshold, and asserts a boost enable signal if the input voltage is lower than an upper threshold. A control circuit asserts a buck PWM signal upon a pulse in a buck clock and de-asserts the buck PWM signal if a buck ramp is higher than a buck control signal, and it keeps the buck PWM signal asserted if the buck enable signal is de-asserted. The control circuit asserts a boost PWM signal upon a pulse in a boost clock and de-asserts the boost PWM signal if a boost ramp is higher than a boost control signal, and it keeps the boost PWM signal de-asserted if the boost enable signal is de-asserted.
    Type: Application
    Filed: April 10, 2023
    Publication date: October 26, 2023
    Inventors: Nunzio Greco, Osvaldo Enrico Zambetti, Ranieri Guerra, Francesca Giacoma Mignemi
  • Patent number: 11626801
    Abstract: A converter includes two switching stages coupled in series between positive and negative input terminals. A control circuit is configured for driving the switching stages based on an output voltage of the converter. A first switching stage includes two switches coupled in series between a positive input terminal and a first node. A capacitor and an inductor are coupled in series between the two switches and a positive output terminal. A third switch is coupled between a node between the capacitor and the inductor and the negative input terminal. A second capacitor is coupled between the first node and the negative input terminal. A second switching stage includes a second node coupled to the first node. Two additional electronic switches are coupled in series between the second node and the negative input terminal. A second inductor is coupled between the two additional switches and the positive output terminal.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 11, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Osvaldo Enrico Zambetti
  • Publication number: 20230034786
    Abstract: First and second circuit branches are coupled between an input node and ground. Each circuit branch includes a series coupling first-fourth transistors in a current flow path with an output node. A first capacitor is coupled between a first capacitor node and a second capacitor node intermediate the first transistor and the second transistor in the first circuit branch. A second capacitor is coupled between a third capacitor node and a fourth capacitor node intermediate the first transistor and the second transistor in the second circuit branch. An inter-branch circuit block between the first and second branches includes a first inter-branch transistor coupled between the first capacitor node in the first circuit branch and the fourth capacitor node in the second circuit branch and a second inter-branch transistor coupled between the third capacitor node in the second circuit branch and the second capacitor node in the first circuit branch.
    Type: Application
    Filed: July 20, 2022
    Publication date: February 2, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro DAGO, Alessandro GASPARINI, Osvaldo Enrico ZAMBETTI, Salvatore LEVANTINO, Massimo Antonio GHIONI
  • Publication number: 20220029539
    Abstract: A converter includes two switching stages coupled in series between positive and negative input terminals. A control circuit is configured for driving the switching stages based on an output voltage of the converter. A first switching stage includes two switches coupled in series between a positive input terminal and a first node. A capacitor and an inductor are coupled in series between the two switches and a positive output terminal. A third switch is coupled between a node between the capacitor and the inductor and the negative input terminal. A second capacitor is coupled between the first node and the negative input terminal. A second switching stage includes a second node coupled to the first node. Two additional electronic switches are coupled in series between the second node and the negative input terminal. A second inductor is coupled between the two additional switches and the positive output terminal.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 11223279
    Abstract: An electronic converter comprises first and second electronic switches that are connected between positive input and output terminals, where an intermediate node between the first and second electronic switches represents a first switching node. Third and fourth electronic switches are connected between the positive output terminal and a negative input terminal, where an intermediate node between the third and fourth electronic switches represents a second switching node. A first terminal of a primary winding of a transformer is connected to the second switching node, and a capacitor and inductance are connected in series between a second terminal of the primary winding and the first switching node. Fifth and sixth electronic switches are connected between the positive output terminal and a negative output terminal, where a first terminal of the secondary winding is connected to an intermediate node between the fifth and sixth electronic switches.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: January 11, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 11201544
    Abstract: A converter includes two switching stages coupled in series between positive and negative input terminals. A control circuit is configured for driving the switching stages based on an output voltage of the converter. A first switching stage includes two switches coupled in series between a positive input terminal and a first node. A capacitor and an inductor are coupled in series between the two switches and a positive output terminal. A third switch is coupled between a node between the capacitor and the inductor and the negative input terminal. A second capacitor is coupled between the first node and the negative input terminal. A second switching stage includes a second node coupled to the first node. Two additional electronic switches are coupled in series between the second node and the negative input terminal. A second inductor is coupled between the two additional switches and the positive output terminal.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: December 14, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 10998811
    Abstract: An electronic converter includes first and second inputs, first and second outputs, and a switching cell configured to supply current. The switching cell includes a half-bridge including first and second switches connected in series between the two inputs. The half-bridge includes a intermediate point between the first and second switch, a first inductor directly connected to the first output, a second inductor connected to the intermediate point, a first capacitor connected in series with the first and second inductors, a second capacitor connected between the intermediate point and the second input, and a circuit connected between a terminal of the first inductor and the second output. A circuit path of the converter is configured to couple the second inductor with the first output through the first capacitor and the first inductor, and another circuit path is configured to couple the second capacitor with the first output through the first inductor.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: May 4, 2021
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Osvaldo Enrico Zambetti
  • Publication number: 20200358355
    Abstract: An electronic converter comprises first and second electronic switches that are connected between positive input and output terminals, where an intermediate node between the first and second electronic switches represents a first switching node. Third and fourth electronic switches are connected between the positive output terminal and a negative input terminal, where an intermediate node between the third and fourth electronic switches represents a second switching node. A first terminal of a primary winding of a transformer is connected to the second switching node, and a capacitor and inductance are connected in series between a second terminal of the primary winding and the first switching node. Fifth and sixth electronic switches are connected between the positive output terminal and a negative output terminal, where a first terminal of the secondary winding is connected to an intermediate node between the fifth and sixth electronic switches.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 12, 2020
    Inventor: Osvaldo Enrico Zambetti
  • Publication number: 20200244155
    Abstract: An electronic converter includes first and second inputs, first and second outputs, and a switching cell configured to supply current. The switching cell includes a half-bridge including first and second switches connected in series between the two inputs. The half-bridge includes a intermediate point between the first and second switch, a first inductor directly connected to the first output, a second inductor connected to the intermediate point, a first capacitor connected in series with the first and second inductors, a second capacitor connected between the intermediate point and the second input, and a circuit connected between a terminal of the first inductor and the second output. A circuit path of the converter is configured to couple the second inductor with the first output through the first capacitor and the first inductor, and another circuit path is configured to couple the second capacitor with the first output through the first inductor.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventor: Osvaldo Enrico Zambetti
  • Publication number: 20200177083
    Abstract: A converter includes two switching stages coupled in series between positive and negative input terminals. A control circuit is configured for driving the switching stages based on an output voltage of the converter. A first switching stage includes two switches coupled in series between a positive input terminal and a first node. A capacitor and an inductor are coupled in series between the two switches and a positive output terminal. A third switch is coupled between a node between the capacitor and the inductor and the negative input terminal. A second capacitor is coupled between the first node and the negative input terminal. A second switching stage includes a second node coupled to the first node. Two additional electronic switches are coupled in series between the second node and the negative input terminal. A second inductor is coupled between the two additional switches and the positive output terminal.
    Type: Application
    Filed: November 11, 2019
    Publication date: June 4, 2020
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 10658918
    Abstract: A switching cell includes: a half-bridge circuit including a first electronic switch and a second electronic switch connected in series between a first input terminal and a second input terminal of an electronic converter, wherein a first capacitor is connected in parallel to the first electronic switch and a second capacitor is connected in parallel to the second electronic switch; a first inductor connected between a first output terminal of the electronic converter and an intermediate point between the first electronic switch and the second electronic switch; a second inductor and a first capacitor connected in series between a first terminal of the first inductor and the intermediate point; a switching circuit connected between the first terminal of the first inductor and a second output terminal of the electronic converter; and a third capacitance connected between the first terminal of the first inductor and the second input terminal.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: May 19, 2020
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Osvaldo Enrico Zambetti
  • Publication number: 20190052165
    Abstract: A switching cell includes: a half-bridge circuit including a first electronic switch and a second electronic switch connected in series between a first input terminal and a second input terminal of an electronic converter, wherein a first capacitor is connected in parallel to the first electronic switch and a second capacitor is connected in parallel to the second electronic switch; a first inductor connected between a first output terminal of the electronic converter and an intermediate point between the first electronic switch and the second electronic switch; a second inductor and a first capacitor connected in series between a first terminal of the first inductor and the intermediate point; a switching circuit connected between the first terminal of the first inductor and a second output terminal of the electronic converter; and a third capacitance connected between the first terminal of the first inductor and the second input terminal.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 14, 2019
    Inventor: Osvaldo Enrico Zambetti
  • Patent number: 10164542
    Abstract: A converter includes first and second input terminals and first and second output terminals. The converter also includes an output capacitor coupled between the first output terminal and the second output terminal, and a magnetic component having two input terminals and three output terminals. A first output terminal of the magnetic component is coupled through a first electronic switch to the second output terminal of the converter, a second output terminal of the magnetic component is coupled to the first output terminal of the converter, and a third output terminal of the magnetic component is coupled through a second electronic switch to the second output terminal of the electronic converter. In addition, the converter includes a switching stage configured to transfer current pulses from the first input terminal and the second input terminal of the converter to the two input terminals of the magnetic component.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: December 25, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Stefano Saggini, Osvaldo Enrico Zambetti, Alessandro Zafarana
  • Patent number: 9780649
    Abstract: A method is provided for controlling a converter of the multiphase interleaving type. According to the method, there is detected when a change of the load applied to an output terminal of the converter occurs. All the phases of the converter are simultaneously turned off, and a driving interleaving phase shift is recovered so as to restart a normal operation of the converter. A controller for carrying out such a method is also provided.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 3, 2017
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Zafarana, Osvaldo Enrico Zambetti
  • Publication number: 20170019032
    Abstract: A converter includes first and second input terminals and first and second output terminals. The converter also includes an output capacitor coupled between the first output terminal and the second output terminal, and a magnetic component having two input terminals and three output terminals. A first output terminal of the magnetic component is coupled through a first electronic switch to the second output terminal of the converter, a second output terminal of the magnetic component is coupled to the first output terminal of the converter, and a third output terminal of the magnetic component is coupled through a second electronic switch to the second output terminal of the electronic converter. In addition, the converter includes a switching stage configured to transfer current pulses from the first input terminal and the second input terminal of the converter to the two input terminals of the magnetic component.
    Type: Application
    Filed: April 21, 2016
    Publication date: January 19, 2017
    Inventors: Stefano SAGGINI, Osvaldo Enrico Zambetti, Alessandro Zafarana
  • Patent number: 9537409
    Abstract: A resonant converter includes a primary switching circuit having a primary winding and a primary switching stage configured to drive the primary winding; a secondary resonant circuit having a secondary winding magnetically coupled to the primary winding, a resonance capacitor connected in parallel to the secondary winding, and first and second secondary inductors respectively coupled between an output terminal of the converter and respective terminals of the resonance capacitor; a rectification stage connected in parallel with the resonance capacitor, and having first and second switches coupled to form a half-bridge; and a feedback command circuit. The command circuit is configured to receive feedback signals representing an output voltage and an output current at the output terminal of the resonant converter, receive voltages at the terminals of the resonance capacitor, and turn on/off, independently with respect to each other, the switches of the rectification stage and the primary switching stage.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 3, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Osvaldo Enrico Zambetti, Stefano Saggini
  • Publication number: 20160276942
    Abstract: A resonant converter includes a primary switching circuit having a primary winding and a primary switching stage configured to drive the primary winding; a secondary resonant circuit having a secondary winding magnetically coupled to the primary winding, a resonance capacitor connected in parallel to the secondary winding, and first and second secondary inductors respectively coupled between an output terminal of the converter and respective terminals of the resonance capacitor; a rectification stage connected in parallel with the resonance capacitor, and having first and second switches coupled to form a half-bridge; and a feedback command circuit. The command circuit is configured to receive feedback signals representing an output voltage and an output current at the output terminal of the resonant converter, receive voltages at the terminals of the resonance capacitor, and turn on/off, independently with respect to each other, the switches of the rectification stage and the primary switching stage.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Inventors: Osvaldo Enrico Zambetti, Stefano Saggini
  • Patent number: 9379628
    Abstract: A resonant converter includes a primary switching circuit having a primary winding and a primary switching stage configured to drive the primary winding; a secondary resonant circuit having a secondary winding magnetically coupled to the primary winding, a resonance capacitor connected in parallel to the secondary winding, and first and second secondary inductors respectively coupled between an output terminal of the converter and respective terminals of the resonance capacitor; a rectification stage connected in parallel with the resonance capacitor, and having first and second switches coupled to form a half-bridge; and a feedback command circuit. The command circuit is configured to receive feedback signals representing an output voltage and an output current at the output terminal of the resonant converter, receive voltages at the terminals of the resonance capacitor, and turn on/off, independently with respect to each other, the switches of the rectification stage and the primary switching stage.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: June 28, 2016
    Assignee: STMicroelectronics S.r.l.
    Inventors: Osvaldo Enrico Zambetti, Stefano Saggini
  • Patent number: 9317047
    Abstract: In a multi-phase power supply voltage regulator functioning at a nominal switching frequency, one or more phases are kept off for optimizing energy efficiency at relatively low load conditions. Reactivation of stand-by phases in response to a load increase transient is made more efficiently by exploiting information already present in the output voltage control loop. The technique comprises a) deriving from the control loop information on the equivalent nominal switching frequency given by the product of the nominal switching frequency by the number of active phases; b) updating at every beat of a clock signal the instantaneous value of the equivalent switching frequency; c) determining the band of equivalent switching frequency values to which the instantaneous value belongs; d) logically combining the equivalent switching frequency information with a determined band of output current level, for switching on one or more stand-by phases in response to a load increase transient.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 19, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Osvaldo Enrico Zambetti, Daniele Giorgetti, Alessandro Zafarana