Patents by Inventor Owen Thomas

Owen Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10915878
    Abstract: Disclosed is cash-release system and methods of use for releasing a cash balance of an account associated with a releasee from a secure facility. One embodiment includes a ticket/card printer/dispenser and a cash-release station operating at the secure facility and a network operations center operating remotely to the secure facility. The network operations center may include an operations processor that is coupled with the ticket dispenser and the cash-release station via a secure communications network, wherein the operations processor implements a cash-release management module to retrieve identity information for and the account balance of the releasee from an accounts-management and records system associated with the secure facility, to dispense an encoded ticket/card providing or linking to the identity information and the account balance, and to operate a cash-release station to read the encoded ticket, verify the identity information, and dispense the account balance to the releasee.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: February 9, 2021
    Assignee: Union Supply Group, Inc.
    Inventors: Lyndel D. Hay, Doyle R. Schaefers, Owen Thomas
  • Patent number: 10837092
    Abstract: A method of making an alpha-beta titanium alloy is provided. The method includes forming a melt and solidifying the melt to form an ingot. The melt composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si at less than 1 wt. %; Fe at up to about 0.3 wt. %; 0 at less than 1 wt. %; and a balance of Ti and incidental impurities. Furthermore, the Al/V ratio in the melt is equal to the concentration of the Al divided by the concentration of the V in weight percent is from about 0.65 to about 0.8.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10837093
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: November 17, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Patent number: 10731240
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: August 4, 2020
    Assignee: TITANIUM METALS CORPORATION
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Publication number: 20200181749
    Abstract: Titanium alloys with an improved and unexpected combination of corrosion resistance, strength, ductility and toughness are provided. The titanium alloys contain molybdenum, nickel, zirconium, iron, and oxygen as alloying agents. Also the titanium alloys may be subjected to thermal treatments. The titanium alloys can include molybdenum between 3.0 to 4.5 wt. %, nickel between 0.1 to 1.0 wt. %, zirconium between 0.1 to 1.5 wt. %, iron between 0.05 to 0.3 wt. %, oxygen between 0.05 to 0.25 wt. %, and a balance of titanium and unavoidable impurities. The titanium alloys can have a yield strength between 550 to 750 MPa, a tensile strength between 700 to 900 MPa, an elongation to failure between 25 to 35%, a reduction in area between 55 to 70%, and a corrosion rate between 0.5 to 2.5 mils per year when exposed to 1 wt. % boiling hydrochloric acid per the ASTM G-31 test method.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, James S. GRAUMAN, Paul GARRATT, James G. MILLER
  • Patent number: 10633732
    Abstract: Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: April 28, 2020
    Assignee: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, Yoji Kosaka, Steven James, Paul Garratt
  • Patent number: 10627997
    Abstract: A method to display changes to a master slide for a presentation includes receiving from a user on a client computer, a selection pertaining to the master slide in a presentation document comprising a plurality of slides, and identifying at least one slide in the presentation document that is dependent on the master slide. The method further includes providing, for display at the client computer, a presentation editing user interface comprising the master slide and the plurality of slides in the presentation document, the plurality of slides comprising the at least one dependent slide and one or more other slides that are not dependent on the master slide, wherein each dependent slide is automatically updated as edits are made to the master slide, and wherein the at least one dependent slide is to include a visual indicator that distinguishes the dependent slide from the other slides that are not dependent on the master slide.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 21, 2020
    Assignee: Google LLC
    Inventors: Sarah Cooper, Shoshana Holtzblatt, Ajay Dev Surie, Michael Owen Thomas
  • Publication number: 20200095665
    Abstract: A titanium alloy composition is provided. In weight percent (wt. %), the alloy includes 5.7 to 8.0% vanadium, 0.5 to 1.75% aluminum, 0.25 to 1.5% iron, 0.1 to 0.2% oxygen, up to 0.15% silicon, up to 0.1% carbon and less than 0.03% nitrogen is provided. In one form, the titanium alloy has a 0.2% yield strength between 600 to 850 MPa, an ultimate tensile strength between 700 to 950 MPa, a percent elongation to failure between 20 to 30%, a percent reduction in area between 40 to 80%, a Charpy U-notch impact energy between 30 to 70 J, and/or a Charpy V-notch impact energy between 40 to 150 J.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 26, 2020
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Steven JAMES, Paul GARRATT, Matthew THOMAS
  • Patent number: 10566640
    Abstract: Improved additives can be used to prepare polymer electrolyte for membrane electrode assemblies in polymer electrolyte fuel cells. Use of these improved additives can not only improve durability and performance, but can also provide a marked performance improvement during initial conditioning of the fuel cells. The additives are chemical complexes comprising certain metal and organic ligand components.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: February 18, 2020
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Keping Wang, Yunsong Yang, Carmen Chuy, Jing Li, Owen Thomas, Yuquan Zou
  • Patent number: 10423713
    Abstract: In a collaborative presentation document, changes may be propagated throughout related elements in dependent slides. When making a change to an individual slide in the presentation, if any master-dependent elements are found to exist in the presentation, an option is provided to allow the change to be added as a master element in the presentation. The added master element can be applied to the master slide and any resulting dependent slides.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: September 24, 2019
    Assignee: GOOGLE LLC
    Inventors: Sarah Cooper, Michael Owen Thomas, Shoshana Holtzblatt, Ajay Dev Surie
  • Patent number: 10403905
    Abstract: Simplified methods for preparing a catalyst coated membrane (CCM) for solid polymer electrolyte fuel cells. The CCM has two reinforcing, expanded polymer sheets and the methods involve forming the electrolyte membrane from ionomer solution during assembly of the CCM. Thus, the conventional requirement to obtain, handle, and decal transfer solid polymer sheets in CCM preparation can be omitted. Further, CCM structures with improved mechanical strength can be prepared by orienting the expanded polymer sheets such that the stronger tensile strength direction of one is orthogonal to the other. Such improved CCM structures can be fabricated using the simplified methods.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: September 3, 2019
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Yuquan Zou, Owen Thomas, Scott McDermid, Yunsong Yang, Jing Li, Carmen Chuy
  • Patent number: 10353960
    Abstract: Systems and methods are disclosed herein for caching structural elements of electronic documents. A plurality of indices is stored in a database. The plurality of indices corresponds to locations within an electronic document of portions of a structural element. A mutation to the electronic document is received. Based on the plurality of indices, it is determined that the mutation modifies the structural element. Based on the determination, the structural element is updated. The updated structural element is displayed at a user device.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: July 16, 2019
    Assignee: GOOGLE LLC
    Inventors: Lindsay Grace Hall, Jeffrey de Blanc Palm, Victoria Hsiao-tsung Chou Fritz, Michael Owen Thomas
  • Publication number: 20190169712
    Abstract: A titanium alloy having high strength, fine grain size, and low cost and a method of manufacturing the same is disclosed. In particular, the titanium alloy offers a room temperature longitudinal low cycle fatigue (LCF) maximum stress of at least about 950 MPa over about 20,000 cycles and a room temperature transverse low cycle fatigue (LCF) maximum stress of at least about 970 MPa over about 25,000 cycles. The titanium alloy is particularly useful for a multitude of applications including components of aircraft engines. The titanium alloy comprises, in weight percent, about 6.0 to about 6.7% aluminum, about 1.4 to about 2.0% vanadium, about 1.4 to about 2.0% molybdenum, about 0.20 to about 0.42% silicon, about 0.17 to about 0.23% oxygen, maximum about 0.24% iron, maximum about 0.08% carbon and balance titanium with incidental impurities.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 6, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Paul GARRATT, John FANNING
  • Publication number: 20190169713
    Abstract: A method of manufacturing a titanium alloy part with a composition, in weight %, of aluminum from about 6.0 to about 6.7; vanadium from about 1.4 to about 2.0; molybdenum from about 1.4 to about 2.0; silicon from about 0.20 to about 0.35; oxygen from about 0.18 to about 0.23; iron from about 0.16 to about 0.24; carbon from about 0.02 to about 0.06; and balance titanium, is provided. The method includes a first heat treatment on an ingot of the titanium alloy, forging of the ingot to break down the cast structure, a second heat treatment on the forged ingot, rolling the forged ingot to a plate, bar or billet, and annealing the plate, bar or billet below the beta transus temperature of the titanium alloy. The first and second heat treatments are between 40 and 200° C. and between 30 and 100° C. below the beat transus temperature, respectively.
    Type: Application
    Filed: November 6, 2018
    Publication date: June 6, 2019
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Paul GARRATT, John FANNING
  • Publication number: 20190156244
    Abstract: A network-accessible machine learning service is provided herein. For example, the network-accessible machine learning service provider can operate one or more physical computing devices accessible to user devices via a network. These physical computing device(s) can host virtual machine instances that are configured to train machine learning models using training data referenced by a user device. These physical computing device(s) can further host virtual machine instances that are configured to execute trained machine learning models in response to user-provided inputs, generating outputs that are stored and/or transmitted to user devices via the network.
    Type: Application
    Filed: November 22, 2017
    Publication date: May 23, 2019
    Inventors: Thomas Albert Faulhaber, Jr., Stefano Stefani, Owen Thomas
  • Publication number: 20190139011
    Abstract: Disclosed is cash-release system and methods of use for releasing a cash balance of an account associated with a releasee from a secure facility. One embodiment includes a ticket/card printer/dispenser and a cash-release station operating at the secure facility and a network operations center operating remotely to the secure facility. The network operations center may include an operations processor that is coupled with the ticket dispenser and the cash-release station via a secure communications network, wherein the operations processor implements a cash-release management module to retrieve identity information for and the account balance of the releasee from an accounts-management and records system associated with the secure facility, to dispense an encoded ticket/card providing or linking to the identity information and the account balance, and to operate a cash-release station to read the encoded ticket, verify the identity information, and dispense the account balance to the releasee.
    Type: Application
    Filed: July 9, 2018
    Publication date: May 9, 2019
    Inventors: Lyndel D. Hay, Doyle R. Schaefers, Owen Thomas
  • Publication number: 20180340249
    Abstract: An alpha-beta titanium alloy is provided. The alpha-beta titanium alloy composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si from about 0.15 wt. % to about 0.6 wt. %; Fe up to about 0.3 wt. %; O from about 0.15 wt. % to about 0.23 wt. %; Ti and incidental impurities as a balance. The alpha-beta titanium alloy may have a solution treated and aged microstructure and an elongation of at least about 10% at room temperature. Also, the alpha-beta titanium alloy may have an Al/V ratio from about 0.65 to about 0.8, the Al/V ratio being equal to the concentration of the Al divided by the concentration of the V in weight percent.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Paul GARRATT, Matthew THOMAS, Yoji KOSAKA
  • Publication number: 20180340248
    Abstract: A method of making an alpha-beta titanium alloy is provided. The method includes forming a melt and solidifying the melt to form an ingot. The melt composition includes concentrations of Al from about 4.7 wt. % to about 6.0 wt. %; V from about 6.5 wt. % to about 8.0 wt. %; Si at less than 1 wt. %; Fe at up to about 0.3 wt. %; 0 at less than 1 wt. %; and a balance of Ti and incidental impurities. Furthermore, the Al/V ratio in the melt is equal to the concentration of the Al divided by the concentration of the V in weight percent is from about 0.65 to about 0.8.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen Thomas, Paul Garratt, Matthew Thomas, Yoji Kosaka
  • Publication number: 20180291492
    Abstract: Titanium alloys formed into a part or component used in applications where a key design criterion is the energy absorbed during deformation of the part when exposed to impact, explosive blast, and/or other forms of shock loading is described. The titanium alloys generally comprise a titanium base with added amounts of aluminum, an isomorphous beta stabilizing element such as vanadium, a eutectoid beta stabilizing element such as silicon and iron, and incidental impurities. The titanium alloys exhibit up to 70% or more improvement in ductility and up to a 16% improvement in ballistic impact resistance over a Ti-6Al-4V alloy, as well as absorbing up to 50% more energy than the Ti-6Al-4V alloy in Charpy impact tests. A method of forming a part that incorporates the titanium alloys and uses a combination of recycled materials and new materials is also described.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Applicant: Titanium Metals Corporation
    Inventors: Roger Owen THOMAS, Yoji KOSAKA, Steven JAMES, Paul GARRATT
  • Publication number: 20180249710
    Abstract: The present proposals relate to an insecticide or miticide composition which demonstrates low phytotoxicity even at relatively high concentrations combined with highly effective insecticidal and miticidal activity. The composition comprises: a fatty acid/amino acid salt, the fatty acid component comprising: one or more unsaturated fatty acids having from 14 to 22 carbon atoms; and one or more saturated fatty acids having from 8 to 18 carbon atoms; wherein the one or more saturated fatty acids having from 8 to 18 carbon atoms forms at least 15 wt. % of the fatty acid component, and wherein the weight ratio of (unsaturated fatty acids having from 14 to 22 carbon atoms) to (saturated fatty acids having from 8 to 18 carbon atoms) is at least 1. Uses of the compositions and methods of killing insects or mites using the compositions also form part of the proposals.
    Type: Application
    Filed: September 7, 2016
    Publication date: September 6, 2018
    Inventors: Owen Thomas Jones, Mark Long