Patents by Inventor Ozdal Boyraz

Ozdal Boyraz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230131584
    Abstract: Various examples for multi-tone continuous wave detection and ranging are disclosed herein. In some embodiments, an initial signal is generated using initial radio frequency (RF) tones, and is emitted as a multi-tone continuous wave signal. The initial signal is reflected from a target and received as a reflected signal. Resultant RF tones, including a frequency, a phase and a power, are determined from the reflected signal in a frequency domain. A frequency-domain sinusoidal wave is fitted to the resultant RF tones in the frequency domain, and a distance to the target is determined using a modulation of the frequency-domain sinusoidal wave. A phase processing algorithm is applied to generate the target distance and speed by triangulating the range information encoded in the backscattered RF tones.
    Type: Application
    Filed: September 3, 2021
    Publication date: April 27, 2023
    Inventors: Mustafa Mert Bayer, Ozdal Boyraz
  • Patent number: 11630189
    Abstract: Various examples for multi-tone continuous wave detection and ranging are disclosed herein. In some embodiments, an initial signal is generated using initial radio frequency (RF) tones, and is emitted as a multi-tone continuous wave signal. The initial signal is reflected from a target and received as a reflected signal. Resultant RF tones, including a frequency and a power, are determined from the reflected signal in a frequency domain. A frequency-domain sinusoidal wave is fitted to the resultant RF tones in the frequency domain, and a distance to the target is determined using a modulation of the frequency-domain sinusoidal wave.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: April 18, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Ozdal Boyraz, Rasul Torun
  • Patent number: 11598672
    Abstract: The present invention features a novel design for a bolometric infrared detector focused on LWIR range for human body high-resolution temperature sensing. The present invention incorporates an efficient plasmonic absorber and VO2 nanobeam to facilitate improvement in both aspects—thermal resolution and spatial resolution. The present invention significantly improves the detectivity, NETD, and responsivity for a smaller form-factor detector active area.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: March 7, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Mohammad Wahiduzzaman Khan, Ozdal Boyraz, Jonathan Sullivan, Jaeho Lee, Ziqi Yu
  • Publication number: 20220178756
    Abstract: The present invention features a novel design for a bolometric infrared detector focused on LWIR range for human body high-resolution temperature sensing, The present invention incorporates an efficient plasmonic absorber and VO2 nanobeam to facilitate improvement in both aspects—thermal resolution and spatial resolution. The present invention significantly improves the detectivity, NETD, and responsivity for a smaller form-factor detector active area.
    Type: Application
    Filed: December 8, 2021
    Publication date: June 9, 2022
    Inventors: Mohammad Wahiduzzama Khan, Ozdal Boyraz, Jonathan Sullivan, Jaeho Lee, Ziqi Yu
  • Publication number: 20210382164
    Abstract: Various examples for multi-tone continuous wave detection and ranging are disclosed herein. In some embodiments, an initial signal is generated using initial radio frequency (RF) tones, and is emitted as a multi-tone continuous wave signal. The initial signal is reflected from a target and received as a reflected signal. Resultant RF tones, including a frequency, a phase and a power, are determined from the reflected signal in a frequency domain. A frequency-domain sinusoidal wave is fitted to the resultant RF tones in the frequency domain, and a distance to the target is determined using a modulation of the frequency-domain sinusoidal wave. A phase processing algorithm is applied to generate the target distance and speed by triangulating the range information encoded in the backscattered RF tones.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: Mustafa Mert Bayer, Ozdal Boyraz
  • Patent number: 11122425
    Abstract: A physical layer secret key generation scheme exploiting randomness of the road surface and driving behavior is described herein. A symmetric key generation scheme can be implemented in any existing V2V visible light communication. By analyzing and simulating numerous samples taken from NGSIM vehicle trajectory data, the natural driving behavior and road surface roughness can be exploited as a source of randomness to generate symmetric cryptographic security keys.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: September 14, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Imam Uz Zaman, Anthony Bahadir Lopez, Mohammad Abdullah Al Faruque, Ozdal Boyraz
  • Patent number: 10903992
    Abstract: Point Optical Link communication security to help resolve the high resource requirements and lack of a trustworthy source of high randomness of existing communication security solutions is described herein. The scheme includes a novel model and a physical layer symmetric cryptographic key generation technique that focuses on exploiting the physical randomness manifested by the Polarization Mode Dispersion effect. This randomness makes it extremely difficult for an adversary to generate the same cryptographic keys as the communicating parties. 128 bit keys with low final mismatch rates (.ltoreq.10%) can be generated, which could easily be truncated for 64-bit and 32-bit keys if necessary.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: January 26, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Imam Uz Zaman, Anthony Bahadir Lopez, Mohammad Abdullah Al Faruque, Ozdal Boyraz
  • Publication number: 20200150250
    Abstract: Various examples for multi-tone continuous wave detection and ranging are disclosed herein. In some embodiments, an initial signal is generated using initial radio frequency (RF) tones, and is emitted as a multi-tone continuous wave signal. The initial signal is reflected from a target and received as a reflected signal. Resultant RF tones, including a frequency and a power, are determined from the reflected signal in a frequency domain. A frequency-domain sinusoidal wave is fitted to the resultant RF tones in the frequency domain, and a distance to the target is determined using a modulation of the frequency-domain sinusoidal wave.
    Type: Application
    Filed: October 29, 2019
    Publication date: May 14, 2020
    Inventors: Ozdal Boyraz, Rasul Torun
  • Publication number: 20200021977
    Abstract: A physical layer secret key generation scheme exploiting randomness of the road surface and driving behavior is described herein. A symmetric key generation scheme can be implemented in any existing V2V visible light communication. By analyzing and simulating numerous samples taken from NGSIM vehicle trajectory data, the natural driving behavior and road surface roughness can be exploited as a source of randomness to generate symmetric cryptographic security keys.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 16, 2020
    Inventors: Imam Uz Zaman, Anthony Bahadir Lopez, Mohammad Abdullah Al Faruque, Ozdal Boyraz
  • Publication number: 20200021433
    Abstract: Point Optical Link communication security to help resolve the high resource requirements and lack of a trustworthy source of high randomness of existing communication security solutions is described herein. The scheme includes a novel model and a physical layer symmetric cryptographic key generation technique that focuses on exploiting the physical randomness manifested by the PMD effect. This randomness made it extremely difficult for an adversary to generate the same cryptographic keys as the communicating parties. 128 bit keys with low final mismatch rates (?10%) were generated, which could easily be truncated for 64-bit and 32-bit keys if necessary.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 16, 2020
    Inventors: Imam Uz Zaman, Anthony Bahadir Lopez, Mohammad Abdullah Al Faruque, Ozdal Boyraz
  • Patent number: 9726794
    Abstract: A high index contrast grating (HICG) structure is disclosed. The HICG structure includes plurality of gratings fabricated from a high refractive index layer. The high refractive index layer is situated over a low refractive index substrate, wherein the high refractive index layer is patterned after determining a period and a duty cycle of each of the plurality of gratings for a desired reflection phase profile based on a lookup table. The low refractive index substrate includes sapphire. The plurality of gratings includes polycrystalline or amorphous silicon. The HICG structure includes subwavelength gratings for incident wavelengths of equal to or greater than 2.5 microns. An exemplary method for forming the HICG structure is also disclosed.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 8, 2017
    Assignee: The Regents of the University of California
    Inventor: Ozdal Boyraz
  • Publication number: 20150362641
    Abstract: A high index contrast grating (HICG) structure is disclosed. The HICG structure includes plurality of gratings fabricated from a high refractive index layer. The high refractive index layer is situated over a low refractive index substrate, wherein the high refractive index layer is patterned after determining a period and a duty cycle of each of the plurality of gratings for a desired reflection phase profile based on a lookup table. The low refractive index substrate includes sapphire. The plurality of gratings includes polycrystalline or amorphous silicon. The HICG structure includes subwavelength gratings for incident wavelengths of equal to or greater than 2.5 microns. An exemplary method for forming the HICG structure is also disclosed.
    Type: Application
    Filed: May 15, 2015
    Publication date: December 17, 2015
    Inventor: Ozdal Boyraz
  • Publication number: 20070297462
    Abstract: A silicon Raman laser that can be electrically switched or modulated and which demonstrates active mode-locking capabilities. The laser can be used with a more traditional glass fiber cavity, or can be fabricated on a single chip with a cavity, or a cascaded cavity, in which the chip fabrication is compatible with widely used silicon chip fabrication methods. The laser can be tuned by adjusting a source pump laser to produce specific output and operates at room temperature. Output is present in the near- and mid-infrared frequency range, and the laser can simultaneously produce output at the Stokes and at the anti-Stokes wavelengths.
    Type: Application
    Filed: February 22, 2007
    Publication date: December 27, 2007
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bahram Jalali, Ozdal Boyraz
  • Patent number: 7254337
    Abstract: An optical communication system includes a plurality of optical add/drop multiplexers (OADMs). The plurality of OADMs includes at least five low distortion OADMs. Each OADM is coupled between spans of a multiple span communication link and operable to receive a multiple wavelength signal. The multiple wavelength signal includes a plurality of bands of wavelength signals each separated from other bands of wavelength signals by one or more guard-channels. In one embodiment, each of the at least five low distortion OADMs adds/drops a common first band of wavelengths to/from the multiple wavelength signal. In some embodiments, a spectral distortion associated with a pass-through wavelength signal spectrally adjacent to one of the one or more guard-channels is no more than three decibels after exiting the last of the plurality of low distortion OADMs. In those embodiments, the guard-channel is adjacent to the first band of wavelengths.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: August 7, 2007
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Andrzej Kaminski, Herve A. Fevrier, Carl A. DeWilde, Ozdal Boyraz
  • Patent number: 7068938
    Abstract: An optical communication system includes a plurality of optical add/drop multiplexers (OADMs). The plurality of OADMs includes at least five low distortion OADMs. Each OADM is coupled between spans of a multiple span communication link and operable to receive a multiple wavelength signal. The multiple wavelength signal includes a plurality of bands of wavelength signals each separated from other bands of wavelength signals by one or more guard-channels. In one embodiment, each of the at least five low distortion OADMs adds/drops a common first band of wavelengths to/from the multiple wavelength signal. In some embodiments, a spectral distortion associated with a pass-through wavelength signal spectrally adjacent to one of the one or more guard-channels is no more than three decibels after exiting the last of the plurality of low distortion OADMs. In those embodiments, the guard-channel is adjacent to the first band of wavelengths.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: June 27, 2006
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Andrzej Kaminski, Herve A. Fevrier, Carl A. DeWilde, Ozdal Boyraz
  • Patent number: 6744553
    Abstract: In one aspect of the invention, an apparatus operable to convert wavelengths of a plurality of optical signals includes a coupler operable to receive a pump signal and a plurality of input signals each input signal comprising at least one wavelength different than the wavelengths of others of the plurality of input optical signals. The apparatus further includes an optical medium operable to receive the pump signal and the plurality of input signals from the couplet, wherein the pump signal and each of the plurality of input signals are synchronized to overlap at least partially during at least a part of the time spent traversing the optical medium to facilitate generation of a plurality of converted wavelength signals each comprising a wavelength that is different than the wavelengths of at least some of the plurality of input signals. Various embodiments can result in low cross-talk and/or low polarization sensitivity.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: June 1, 2004
    Assignee: Xtera Communications, Inc.
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Carl A. Dewilde
  • Patent number: 6603910
    Abstract: Method and system are disclosed for stable, multi-wavelength continuous wave (CW) generation using fiber-based supercontinuum and spectrum-slicing of its longitudinal modes. The continuum generated is coherent and stable, making it an attractive alternative as a spectrally-sliced source for continuous, multiple wavelength channels. A 140 nm wide supercontinuum with a 10 GHz repetition rate is generated in <30 meters of fiber. To obtain CW channels with 40 GHz spacing, time-domain multiplexing and longitudinal mode slicing are utilized. To obtain stable, continuous wave operation, short-fiber supercontinuum generation and a pulse interleaving method are utilized. The invention may be utilized as a broadband wavelength-division multiplexed source.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 5, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Jaeyoun Kim
  • Publication number: 20020131693
    Abstract: Method and system are disclosed for stable, multi-wavelength continuous wave (CW) generation using fiber-based supercontinuum and spectrum-slicing of its longitudinal modes. The continuum generated is coherent and stable, making it an attractive alternative as a spectrally-sliced source for continuous, multiple wavelength channels. A 140 nm wide supercontinuum with a 10 GHz repetition rate is generated in <30 meters of fiber. To obtain CW channels with 40 GHz spacing, time-domain multiplexing and longitudinal mode slicing are utilized. To obtain stable, continuous wave operation, short-fiber supercontinuum generation and a pulse interleaving method are utilized. The invention may be utilized as a broadband wavelength-division multiplexed source.
    Type: Application
    Filed: April 30, 2002
    Publication date: September 19, 2002
    Applicant: The Regents of the University of Michigan
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Jaeyoun Kim
  • Patent number: 6381391
    Abstract: Method and system are disclosed for stable, multi-wavelength continuous wave (CW) generation using fiber-based supercontinuum and spectrum-slicing of its longitudinal modes. The continuum generated is coherent and stable, making it an attractive alternative as a spectrally-sliced source for continuous, multiple wavelength channels. A 140 nm wide supercontinuum with a 10 GHz repetition rate is generated in <30 meters of fiber. To obtain CW channels with 40 GHz spacing, time-domain multiplexing and longitudinal mode slicing are utilized. To obtain stable, continuous wave operation, short-fiber supercontinuum generation and a pulse interleaving method are utilized. The invention may be utilized as a broadband wavelength-division multiplexed source.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: April 30, 2002
    Assignee: The Regents of The University of Michigan
    Inventors: Mohammed N. Islam, Ozdal Boyraz, Jaeyoun Kim