Patents by Inventor Pablo E. Limon-Garcia-Viesca

Pablo E. Limon-Garcia-Viesca has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10838000
    Abstract: A method and apparatus for simultaneously testing a component at multiple frequencies is disclosed. A digital processing circuit may generate a digital representation of a signal having a plurality of sine waves, each having a unique frequency. The digital representation may be converted into an analog signal, and applied to a device under test (DUT). A first analog-to-digital converter (ADC) may be coupled to measure voltages across the DUT, while a second ADC may be coupled to measure currents through the DUT. Voltage and current signals received by the first and second ADCs, respectively, may be converted into first and second digital values. Voltage and current values at each unique frequency are determined from the first and second digital values. Using the voltage and current values for each unique frequency, a frequency response of the component (e.g., an impedance) over a range of frequencies may be determined.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 17, 2020
    Assignee: National Instruments Corporation
    Inventors: Blake A. Lindell, Pablo E. Limon-Garcia-Viesca
  • Patent number: 10338110
    Abstract: A source-measure unit (SMU) may be implemented with digital control loops and circuitry to digitally compensate for the impact of input bias current on current measurements. One or more buffers having well-defined characteristics with respect to certain parameters which may affect the current measurements may be used in the output signal path of the SMU where a shunt voltage developed across a current sense element is measured. For example, the buffers may conduct/develop respective input bias currents that change perceptibly and predictably with temperature. By measuring the temperature and adjusting a control voltage—which is used to develop the shunt voltage—according to the temperature measurements, the impact of the input bias current[s] on the current measurement[s] may be reduced to negligible levels and/or may be eliminated.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 2, 2019
    Assignee: National Instruments Corporation
    Inventors: Pablo E. Limon-Garcia-Viesca, Christopher G. Regier
  • Publication number: 20180267096
    Abstract: A method and apparatus for simultaneously testing a component at multiple frequencies is disclosed. A digital processing circuit may generate a digital representation of a signal having a plurality of sine waves, each having a unique frequency. The digital representation may be converted into an analog signal, and applied to a device under test (DUT). A first analog-to-digital converter (ADC) may be coupled to measure voltages across the DUT, while a second ADC may be coupled to measure currents through the DUT. Voltage and current signals received by the first and second ADCs, respectively, may be converted into first and second digital values. Voltage and current values at each unique frequency are determined from the first and second digital values. Using the voltage and current values for each unique frequency, a frequency response of the component (e.g., an impedance) over a range of frequencies may be determined.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 20, 2018
    Inventors: Blake A. Lindell, Pablo E. Limon-Garcia-Viesca
  • Publication number: 20170146575
    Abstract: A source-measure unit (SMU) may be implemented with digital control loops and circuitry to digitally compensate for the impact of input bias current on current measurements. One or more buffers having well-defined characteristics with respect to certain parameters which may affect the current measurements may be used in the output signal path of the SMU where a shunt voltage developed across a current sense element is measured. For example, the buffers may conduct/develop respective input bias currents that change perceptibly and predictably with temperature. By measuring the temperature and adjusting a control voltage—which is used to develop the shunt voltage—according to the temperature measurements, the impact of the input bias current[s] on the current measurement[s] may be reduced to negligible levels and/or may be eliminated.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 25, 2017
    Inventors: Pablo E. Limon-Garcia-Viesca, Christopher G. Regier