Patents by Inventor Paolo Novellini

Paolo Novellini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240161188
    Abstract: A fast clock domain crossing architecture for high frequency trading includes a receiver that recovers data and a clock of a first clock domain from a communication from an exchange, functional circuitry that generates and a buy/sell command based on the recovered data and the recovered clock, format circuitry that formats the command in a second clock domain, and a transmitter that transmits the formatted command to the exchange. The architecture further includes error detection circuitry that detects bit errors that arise from an asynchronous boundary of the clock domains without increasing a round-trip latency, and/or synchronization circuitry that synchronizes the clock domains, where the synchronization circuitry includes a cleanup PLL that filters input jitter and a phase detector and variable delay line that compensate for latency within the architecture.
    Type: Application
    Filed: November 15, 2022
    Publication date: May 16, 2024
    Inventor: Paolo NOVELLINI
  • Patent number: 11705910
    Abstract: Methods and apparatus for quickly changing line rates in PCIe analyzers without resetting the receivers. One example circuit for multi-rate reception generally includes: a receiver having a data input, a data output, and a clock input configured to receive a clock signal from a clock generator, the receiver being configured to switch between receiving data at a first data rate and at least one second data rate and to sample data according to the first data rate, wherein the first data rate is higher than the at least one second data rate; a phase detector having an input coupled to the data output of the receiver; and a filter having an input coupled to an output of the phase detector and having an output configured to effectively control a phase of the sampling by the receiver when the data is at the at least one second data rate.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: July 18, 2023
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Publication number: 20230216508
    Abstract: Methods and apparatus for quickly changing line rates in PCIe analyzers without resetting the receivers. One example circuit for multi-rate reception generally includes: a receiver having a data input, a data output, and a clock input configured to receive a clock signal from a clock generator, the receiver being configured to switch between receiving data at a first data rate and at least one second data rate and to sample data according to the first data rate, wherein the first data rate is higher than the at least one second data rate; a phase detector having an input coupled to the data output of the receiver; and a filter having an input coupled to an output of the phase detector and having an output configured to effectively control a phase of the sampling by the receiver when the data is at the at least one second data rate.
    Type: Application
    Filed: January 5, 2022
    Publication date: July 6, 2023
    Inventor: Paolo NOVELLINI
  • Patent number: 11637645
    Abstract: A method for measuring asynchronous timestamp requests includes receiving a timestamp (“TS”) request from a client device during a first interval of a time of day (“TOD”) clock, and calculating, using the TOD clock, at a next interval of the TOD clock, a TS correction of the TS request relative to a reference point of the first TOD clock interval. The method further includes adding the TS correction to the reference point of the first interval of the TOD clock, and outputting the corrected TS to the client device.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 25, 2023
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Patent number: 11212072
    Abstract: A circuit for processing a data stream is described. The circuit comprises a burst phase detector configured to receive a data input signal; a clocking circuit coupled to the burst phase detector, wherein the clocking circuit is configured to receive a delayed data input signal and to receive a data stream phase signal and a data stream detect signal; and a programmable clock generator configured to receive a plurality of clock signals; wherein a selected clock signal of the plurality of clock signals is generated by the programmable clock generator and provided to the burst phase detector and the clocking circuit.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 28, 2021
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Patent number: 10832757
    Abstract: A receiver implemented in an integrated circuit device is described. The receiver circuit comprises a first receiver circuit configured to receive first data, wherein the first receiver circuit comprises a first memory element configured to receive the first data in response to a first clock signal; a latency mirror circuit configured to receive second data, wherein the latency mirror circuit comprises a second memory element configured to receive the second data in response to a second clock signal; and a latency control circuit configured to detect a latency in the second data, wherein the latency control circuit adjusts a phase of the first clock signal used to receive the first data in the first receiver circuit.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: November 10, 2020
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Giovanni Guasti
  • Patent number: 10547317
    Abstract: A device includes a physical medium attachment (PMA), a physical coding sublayer (PCS), a phase detector, and an oscillator. The PMA receives data at a first speed and overclocks the received data to a second speed, wherein the second speed is higher than the first speed. The PCS receives the data at the second speed. The phase detector receives another data from the PCS wherein the another data is based on the received data at the second speed or the phase detector is configured to receive the data at the second speed directly from the PMA. The phase detector adjusts a phase based on bit transitions. The oscillator is coupled to the phase detector and generates a reference clock signal wherein a phase of the reference clock is adjusted by the phase detector. The oscillator clocks the PMA based on the adjusted clock.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: January 28, 2020
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, David F. Taylor, Alastair J. Richardson
  • Patent number: 10419203
    Abstract: An example circuit includes: a transmitter configured to transmit a clock pattern based on a transmit clock; a receiver, coupled to the transmitter, configured to sample the clock pattern based on a receive clock to generate a bit pattern, where there is a non-zero frequency difference between the transmit clock and the receive clock; a phase interpolator (PI) configured to add a phase shift to a source clock to supply one of the transmit clock or the receive clock; and a test circuit configured to apply adjustments to the phase shift over a time period and determine a phase distribution of the PI based on changes in the bit pattern over the time period.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: September 17, 2019
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Antonello Di Fresco
  • Patent number: 10348312
    Abstract: A circuit for receiving data is described. The circuit comprises a phase detector circuit comprising a detector having a first input configured to receive a sum of an oscillator phase and a phase error, and a second input coupled to an output of a first sample selector; a second sample selector having an input coupled to receive the input data and generate output data; and an eye detection circuit comprising a third sample selector having an input coupled to receive the input data and a comparator for comparing outputs of the second sample selector and the third sample selector to determine how much an eye is open for a plurality of channels. A method of implementing a receiver is also described.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: July 9, 2019
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Antonello Di Fresco
  • Patent number: 10291501
    Abstract: An integrated circuit (IC) includes a first device and a second device. A latency measurement circuit is configured to determine a first latency of the first device; and determine a second latency of the second device based on the first latency.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: May 14, 2019
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Giovanni Guasti
  • Patent number: 9992049
    Abstract: A receiver for processing a data stream includes: a bursty phase detector having a first voltage-controlled oscillator configured to provide a first VCO phase, a signal stream detector configured to provide a data stream phase and a data stream detect signal, and a delay component configured to receive the data stream; a clocking circuit coupled to receive an output of the delay component, the data stream phase, and the data stream detect signal, the clocking circuit configured to provide a second VCO phase at an output of the clocking circuit, wherein the clocking circuit is configured to operate based on a fractional relationship between a reference clock frequency and an output frequency; and a data sample selector with a first input coupled to the output of the delay component, and a second input coupled to the output of the clocking circuit.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 5, 2018
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Patent number: 9378174
    Abstract: An apparatus relates generally to serializer-deserializers. In such an apparatus, a first serializer-deserializer has a first data path and a data eye path. The first data path is coupled to a first data out interface of the first serializer-deserializer. A second serializer-deserializer has a second data path. The second data path is coupled to a second data out interface of the second serializer-deserializer. The data eye path of the first serializer-deserializer is coupled to the second data path of the second serializer-deserializer.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: June 28, 2016
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Anthony Torza
  • Patent number: 9331724
    Abstract: In a method relating generally to starting a plurality of transmitters, a sequence is initiated for each of the plurality of transmitters having corresponding data buffers. Latency is set for each of the data buffers responsive to execution of the sequence. The sequence includes: obtaining a read address associated with a read clock signal; obtaining a write address associated with a write clock signal; determining a difference between the read address and the write address; asserting a flag signal associated with the difference; and adjusting the read clock signal to change the difference to locate a change of state location for the flag signal to set the latency for a data buffer of the data buffers.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: May 3, 2016
    Assignee: XILINX, INC.
    Inventors: Paolo Novellini, Giovanni Guasti
  • Publication number: 20160080008
    Abstract: In a method relating generally to starting a plurality of transmitters, a sequence is initiated for each of the plurality of transmitters having corresponding data buffers. Latency is set for each of the data buffers responsive to execution of the sequence. The sequence includes: obtaining a read address associated with a read clock signal; obtaining a write address associated with a write clock signal; determining a difference between the read address and the write address; asserting a flag signal associated with the difference; and adjusting the read clock signal to change the difference to locate a change of state location for the flag signal to set the latency for a data buffer of the data buffers.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 17, 2016
    Applicant: XILINX, INC.
    Inventors: Paolo Novellini, Giovanni Guasti
  • Patent number: 9143316
    Abstract: A data recovery unit includes a phase locked loop configured to receive data samples and generate an output; a first sample selector coupled to the phase locked loop; and an eye scanner coupled to the phase locked loop. The first sample selector is configured to receive the data samples and the output of the phase locked loop. The eye scanner comprises a second sample selector coupled to the phase locked loop via a first horizontal shift module.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: September 22, 2015
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Patent number: 9130807
    Abstract: A data recovery unit (DRU) includes: an oscillator; a phase detector unit configured to receive a reference phase and to receive input data through N wires, where N is an integer, to compare the reference phase with the input data to obtain phase errors, and to determine an average of the phase errors; a subtractor to subtract an output of the oscillator from the average of the phase errors to obtain an unbiased phase error; a delay unit to receive the input data; and a sample selector configured to receive an output from the delay unit and the output of the oscillator, and to output recovered data.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: September 8, 2015
    Assignee: XILINX, INC.
    Inventor: Paolo Novellini
  • Publication number: 20150127877
    Abstract: An apparatus relates generally to serializer-deserializers. In such an apparatus, a first serializer-deserializer has a first data path and a data eye path. The first data path is coupled to a first data out interface of the first serializer-deserializer. A second serializer-deserializer has a second data path. The second data path is coupled to a second data out interface of the second serializer-deserializer. The data eye path of the first serializer-deserializer is coupled to the second data path of the second serializer-deserializer.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: Xilinx, Inc.
    Inventors: Paolo Novellini, Anthony Torza
  • Patent number: 8971468
    Abstract: The methods and apparatus disclosed herein provide an operative system for increasing the resolution of serial DRUs based on interleaved free running oversamplers. In particular, this system uses incoming data to measure and to compensate the skew between two or more free running oversamplers (e.g., SerDes), without the need for any hardware design requirement relating to the precision of the relative skew of the oversamplers.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 3, 2015
    Assignee: Xilinx, Inc.
    Inventor: Paolo Novellini
  • Patent number: 8958513
    Abstract: A device and method for clock and data recovery are disclosed. For example, an integrated circuit comprises a first branch for recovering a clock signal from an input signal. The first branch includes a phase and frequency detector for detecting a phase and a frequency of the clock signal and a numerically controlled oscillator that is controlled by the phase and the frequency of the clock signal from the phase and frequency detector. The integrated circuit also includes a second branch for recovering a data signal from the input signal. The second branch includes a pre-settable numerically controlled oscillator that is pre-settable with the phase and the frequency of the clock signal from the numerically controlled oscillator. The second branch also includes a sample selector that is controlled by the pre-settable numerically controlled oscillator for recovering the data signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Xilinx, Inc.
    Inventors: Paolo Novellini, Martin J. Kellermann
  • Patent number: 8724764
    Abstract: A system can include a phase detector configured to generate a phase error signal indicating a phase error of an input signal compared to an output signal and a first filter coupled to the phase detector and configured to generate a first control signal derived from the phase error signal. The system can include a pattern error detector configured to generate a pattern error signal specifying a pattern error of the input signal compared to the output signal and a second filter coupled to the pattern error detector and configured to generate a second control signal derived from the pattern error signal. The system further can include a controlled oscillator coupled to the first filter and the second filter, wherein the controlled oscillator is configured to generate the output signal responsive to the first control signal, the second control signal, and a center frequency signal.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: May 13, 2014
    Assignee: Xilinx, Inc.
    Inventors: Giovanni Guasti, Paolo Novellini