Patents by Inventor Paresh Lakhubhai Patel

Paresh Lakhubhai Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891599
    Abstract: Disclosed is a method for the recovery of nucleic acids from a solid support, the method comprising the steps, in any suitable order, of: a) providing a solid support at least a region of which is absorbent and impregnated with a chaotropic agent; b) combining a biological sample, possibly including nucleic acids, with the region; c) washing the region in a washing buffer solution; d) simultaneously heating and agitating the region in a further buffer solution; e) separating the region from the further buffer solution; f) extracting at least a portion of any remaining further buffer solution from the region to provide an extracted buffer solution; g) combining the further buffer solution and the extracted buffer solution portion; and h) subsequently processing the combined buffer solutions in order to amplify any nucleic acids in said combined solution. Hardware suitable for implementing the above method and a kit of parts is disclosed also.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: February 6, 2024
    Assignee: QIAGEN Healthcare Biotechnologies Systems GmbH
    Inventors: Paresh Lakhubhai Patel, Lin Chen, Melissa Schwandt, Koya Reams, Thomas Hansen
  • Publication number: 20210214716
    Abstract: Disclosed is a method for the recovery of nucleic acids from a solid support, the method comprising the steps, in any suitable order, of: a) providing a solid support at least a region of which is absorbent and impregnated with a chaotropic agent; b) combining a biological sample, possibly including nucleic acids, with the region; c) washing the region in a washing buffer solution; d) simultaneously heating and agitating the region in a further buffer solution; e) separating the region from the further buffer solution; f) extracting at least a portion of any remaining further buffer solution from the region to provide an extracted buffer solution; g) combining the further buffer solution and the extracted buffer solution portion; and h) subsequently processing the combined buffer solutions in order to amplify any nucleic acids in said combined solution.
    Type: Application
    Filed: May 18, 2018
    Publication date: July 15, 2021
    Inventors: Paresh Lakhubhai PATEL, Lin CHEN, Melissa WANDT, Koya REAMS, Thomas HANSEN
  • Patent number: 10597691
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper
  • Patent number: 10443094
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 15, 2019
    Assignee: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper, Peter James Tatnell, Jeffrey Kenneth Horton
  • Publication number: 20170137874
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper, Peter James Tatnell, Jeffrey Kenneth Horton
  • Publication number: 20170121747
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Application
    Filed: January 18, 2017
    Publication date: May 4, 2017
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper
  • Patent number: 9587263
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: March 7, 2017
    Assignee: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper
  • Publication number: 20150275282
    Abstract: Provided herein are methods and kits for isothermal nucleic acid amplifications that use a target nucleic acid template; a reaction mixture comprising a DNA polymerase having a strand displacement activity, a deoxyribonucleoside triphosphate (dNTP) mixture, a primer with a 3? end and a 5? end, a molecular crowding reagent, and a buffer solution for amplifying the target nucleic acid template. The buffer solution maintains a low salt concentration of the reaction mixture, and wherein the salt concentration results in a melting temperature (Tm) of the primer at least 10° C. below the reaction temperature. The amplification is effected under isothermal condition.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: General Electric Company
    Inventors: Ryan Charles Heller, John Richard Nelson, Paresh Lakhubhai Patel, Alison Myfanwy Wakefield, Stephen James Capper