Patents by Inventor Parin Patel

Parin Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170025862
    Abstract: Methods, circuits, and apparatus to distribute power among devices in an electronic system where a device may receive power from more than one source, may have a bidirectional power connector, or both. One example may resolve conflicts when an electronic device receives power from more than one source. In this example, the device may determine which source may provide the most power, and may select to receive power from the power source that may deliver the most power. Other examples may have a preference to receive power from a particular source or via a specific connector. Other examples may switch from receiving power over a first connector to providing power over the first connector, while others may receive and provide power over different connectors at the same time. Another may be connected to a battery, and may draw power from the battery or not depending on the type of battery.
    Type: Application
    Filed: June 6, 2016
    Publication date: January 26, 2017
    Applicant: Apple Inc.
    Inventors: Alexei E. Kosut, Paul M. Thompson, Parin Patel, Alan C. Cooney, Glen A. Rhodes
  • Publication number: 20170019596
    Abstract: In a portable camera device, a variable voltage regulator produces a power supply voltage of a VCM driver circuit that conducts the coil current of a VCM actuator as part of an optical image stabilization (OIS) mechanism. A processor signals the variable voltage regulator to increase the power supply voltage when the camera device transitions from still capture mode or preview mode to video capture mode, where the increase causes an increase in stroke of the VCM OIS actuator. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Ryan J. Dunn, Damien J. Thivent, Morgan T. McClure, Parin Patel
  • Patent number: 9531931
    Abstract: An asymmetric multiphase boost that provides flash functionality for display backlights. A backlight power management module for a display backlight may implement and control an asymmetric multiphase boost that includes two boost phases: a primary boost phase for typical display backlighting, and a secondary or flash boost phase that provides flash functionality via the display backlight when needed. The primary boost phase may be sized to provide high low-load efficiency, high inductance, and low switching frequency for normal display backlight operations. The flash boost phase may be sized for high current and peak power, low inductance, and high switching frequency for pulsed current applications. Via the asymmetric multiphase boost, the backlight power management module may, for example, be used to provide a camera flash function for front facing cameras.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 27, 2016
    Assignee: Apple Inc.
    Inventors: Parin Patel, Stephen J. Hrinya
  • Patent number: 9529403
    Abstract: A method and apparatus for providing telemetry for use in power control functions is disclosed. A system includes an integrated circuit (IC) having a first power management circuit. The IC also includes a number of functional circuit blocks within a number of different power domains. A second power management circuit is implemented external to the IC and includes a number of voltage regulators. Each of the power domains is coupled to receive power from one voltage regulators. During operation, the first power management circuit may send commands requesting the change of one or more voltages provided to the IC. The second power management circuit may respond by performing the requested voltage change(s), and may also provide telemetry data to the first power management circuit. The second power management circuit may also provide telemetry data responsive to receiving a no operation command from the first power management circuit.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 27, 2016
    Assignee: Apple Inc.
    Inventors: Manu Gulati, Parin Patel, Keith Cox, Derek Iwamoto, Cyril de la Cropte de Chanterac, Christopher J. Young
  • Patent number: 9506754
    Abstract: A parameter related to the Earth's magnetic field can be used to determine accuracy of a magnetometer of a mobile device. In one aspect, a first instance of a parameter related to Earth's magnetic field is determined using data generated by the magnetometer. The magnetometer data can be based in part on a position of the mobile device with respect to the Earth. A second instance of the parameter can be determined using data generated by a model of Earth's magnetic field. The model data can also be based in part on the position of the mobile device with respect to the Earth. The first instance of the parameter can be compared with the second instance of the parameter. An accuracy metric for the magnetometer can be determined based on a result of the comparison. An indication of the accuracy metric can be presented by the mobile device.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: November 29, 2016
    Assignee: Apple Inc.
    Inventors: Robert Mayor, Patrick Piemonte, Ronald Keryuan Huang, Parin Patel
  • Patent number: 9485398
    Abstract: A device to capture an image includes a camera oriented to capture a first image of a subject and a display oriented to display a second image that is viewable by the subject. A backlight is coupled to the display to provide light that passes through the display toward the subject. An image processor is coupled to the camera and the backlight to adjust an amount of light provided by the backlight responsive to a quality of the first image. The light provided by the backlight may illuminate the subject and thereby improve the quality of the first image. The image processor may further adjust the amount of light provided by the backlight responsive to an ambient light level sensed by an ambient light sensor. The image processor may further adjust the second image to adjust an amount of light that passes through the display.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: November 1, 2016
    Assignee: Apple Inc.
    Inventor: Parin Patel
  • Publication number: 20160308438
    Abstract: The switching frequency of a switch mode PFM power converter is compared with a predetermined frequency range that contains the operating frequency of a nearby clocked sub-system. In response to the switching frequency coming into the range, a parameter of the power converter is changed from an original value, so as to cause the switching frequency to go out of the range.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Rajarshi Paul, Parin Patel
  • Patent number: 9438054
    Abstract: An on-chip digital communication interface circuit is to be directly coupled to a counterpart interface circuit of a separate battery-side gas gauge circuit. An on-chip battery charging control circuit controls battery charging voltage and current that is supplied from a separate power source interface circuit to a battery cell terminal, according to charging voltage and current limits. The charging limits are read from the gas gauge circuit and in effect carry out a selected one of several different battery charging profiles. Other embodiments are also described and claimed.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: September 6, 2016
    Assignee: Apple Inc.
    Inventors: Parin Patel, Thomas C. Greening, Carl D. Tappan
  • Publication number: 20160223412
    Abstract: A power-management unit is described. This power-management unit allows a common signal line to communicate data between an integrated circuit (which may be external to the power-management unit) and a battery-monitoring mechanism in a battery pack, and to convey a signal that represents a temperature state of the battery pack to a temperature-monitoring circuit or mechanism that monitors the temperature state of the battery pack. In particular, the power-management unit may include a single-wire interface or a multiplexer that, at a given time, selectively couples the signal line from the battery pack either to the integrated circuit or the temperature-monitoring circuit based on a control signal provided by the integrated circuit (for example, via an I2C bus or interface). In this way, the power-management unit may reduce the number of signal lines needed to communicate with the battery-monitoring mechanism and to convey the signal.
    Type: Application
    Filed: December 24, 2012
    Publication date: August 4, 2016
    Applicant: APPLE INC.
    Inventors: Parin Patel, Scott P. Mullins
  • Patent number: 9379606
    Abstract: The switching frequency of a switch mode PFM power converter is compared with a predetermined frequency range that contains the operating frequency of a nearby clocked sub-system. In response to the switching frequency coming into the range, a parameter of the power converter is changed from an original value, so as to cause the switching frequency to go out of the range.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 28, 2016
    Assignee: Apple Inc.
    Inventors: Rajarshi Paul, Parin Patel
  • Publication number: 20160094763
    Abstract: An asymmetric multiphase boost that provides flash functionality for display backlights. A backlight power management module for a display backlight may implement and control an asymmetric multiphase boost that includes two boost phases: a primary boost phase for typical display backlighting, and a secondary or flash boost phase that provides flash functionality via the display backlight when needed. The primary boost phase may be sized to provide high low-load efficiency, high inductance, and low switching frequency for normal display backlight operations. The flash boost phase may be sized for high current and peak power, low inductance, and high switching frequency for pulsed current applications. Via the asymmetric multiphase boost, the backlight power management module may, for example, be used to provide a camera flash function for front facing cameras.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Applicant: APPLE INC.
    Inventors: Parin Patel, Stephen J. Hrinya
  • Publication number: 20160077579
    Abstract: In an embodiment, a system includes a power management unit (PMU), a non-volatile memory, a volatile memory, and a processor. The PMU may be configured to generate a power supply voltage, change a state of a status signal responsive to an event, and reduce a voltage level of the power supply voltage responsive to a predetermined period of time elapsing from detecting the event. The system may be configured to transition from a first to a second operating mode responsive to the change of the state of the status signal, and cancel pending commands to the non-volatile memory responsive to the transition to the second operating mode. The non-volatile memory may be configured to complete active commands prior the predetermined period of time elapsing.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 17, 2016
    Inventors: Manu Gulati, Tristan R. Hudson, Parin Patel, Fabien Faure
  • Publication number: 20160054788
    Abstract: A method and apparatus for parameter-based sensor selection is disclosed. In one embodiment, a system includes an integrated circuit (IC) having a first power management circuit, and a second power management circuit external to the IC. The IC includes various functional units implemented in various power domains, while the second power management circuit (which may be implemented on an IC) includes a number of voltage regulators for providing power to the power domains. The second power management circuit also includes sensors that provide data about a system parameter, with the data being provided at telemetry to the first power management circuit. When the system parameter is less than a first threshold, the telemetry data may be based on a first sensor. When the system parameter is greater than the first threshold, the telemetry data may be based on a second sensor.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Manu Gulati, Parin Patel, Derek Iwamoto, Carl D. Tappan
  • Publication number: 20160055978
    Abstract: This application includes multiple embodiments related to capacitors. In some embodiments, capacitors are set forth as having terminal leads that extend in parallel and opposing axial directions. The embodiments discussed herein relate to a capacitor module including one or more anodized pellets for providing a charge storage within the capacitor module. The capacitor module can be configured as a surface mounted or non-surface mounted capacitor module. The capacitor module can include an array of anodized pellets arranged in multiple rows or columns of anodized pellets connected by conductive trace included in the capacitor module. In a non-surface mounted embodiment of the capacitor module, the capacitor module can include cathode and anode connections that are exclusively on the side surfaces of the capacitor module.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 25, 2016
    Inventors: Gang Ning, Raul A. Perez, Parin Patel
  • Publication number: 20160054773
    Abstract: A method and apparatus for providing telemetry for use in power control functions is disclosed. A system includes an integrated circuit (IC) having a first power management circuit. The IC also includes a number of functional circuit blocks within a number of different power domains. A second power management circuit is implemented external to the IC and includes a number of voltage regulators. Each of the power domains is coupled to receive power from one voltage regulators. During operation, the first power management circuit may send commands requesting the change of one or more voltages provided to the IC. The second power management circuit may respond by performing the requested voltage change(s), and may also provide telemetry data to the first power management circuit. The second power management circuit may also provide telemetry data responsive to receiving a no operation command from the first power management circuit.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 25, 2016
    Inventors: Manu Gulati, Parin Patel, Keith Cox, Derek Iwamoto, Cyril de la Cropte de Chanterac, Christopher J. Young
  • Publication number: 20160018871
    Abstract: Power and thermal management that uses trigger circuits to activate power telemetry. A power consumption level of a subsystem is monitored using a trigger circuit while power telemetry mode for the subsystem is inactive. When the monitored power consumption level exceeds a threshold, the trigger circuit activates the power telemetry mode of operation in which telemetry information of the subsystem is provided to a controller. Power consumption of the subsystem is then managed by the controller based on telemetry information obtained under the power telemetry mode. The controller can determine whether a power consumption level of the subsystem has dropped below a threshold, based on telemetry information obtained under the power telemetry mode. The controller may terminate the power telemetry mode when the power consumption level has dropped below the threshold. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 21, 2016
    Inventors: Parin Patel, Keith Cox
  • Publication number: 20150288285
    Abstract: A power conversion circuit has multiple phases wherein each of the phases has an inductor coupled to a power switch circuit and is coupled to an output node. A power conversion controller controls the switching of one or more of the phases to yield a regulated voltage on the output node. The controller uses a variable inductor current limit for one or more designated phases, and temporarily increases the variable inductor current limit during a transient condition. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 8, 2015
    Inventors: Rajarshi Paul, Parin Patel, Talbott M. Houk
  • Patent number: 8990604
    Abstract: A power gate is coupled to a power supply circuit to selectively provide power to a processing core. A switch has a local state and a remote state to alternately route (i) a local sense point on a supply side of the power gate and (ii) and a remote sense point on a load side of the power gate, to a load voltage feedback input of the power supply circuit. Timing logic and driver circuitry control the power gate and the switch in response to a processing core enable signal. Other embodiments are also described.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Apple Inc.
    Inventor: Parin Patel
  • Publication number: 20140365803
    Abstract: In some implementations, a mobile device can be configured with virtual motion fences that delineate domains of motion detectable by the mobile device. In some implementations, the mobile device can be configured to invoke an application or function when the mobile device enters or exits a motion domain (by crossing a motion fence). In some implementations, entering or exiting a motion domain can cause components of the mobile device to power on or off (or awaken or sleep) in an incremental manner.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Hung A. Pham, Parin Patel, Venu M. Duggineni
  • Publication number: 20140354257
    Abstract: The switching frequency of a switch mode PFM power converter is compared with a predetermined frequency range that contains the operating frequency of a nearby clocked sub-system. In response to the switching frequency coming into the range, a parameter of the power converter is changed from an original value, so as to cause the switching frequency to go out of the range.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Rajarshi Paul, Parin Patel