Patents by Inventor Pascal Royer

Pascal Royer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9683891
    Abstract: A spectrometer for sampling interferograms in two dimensions offering a large spectral band and high spectral resolution with a relative compactness. The spectrometer includes a refracting surface, an array of detecting elements and an array of diffusion elements capturing means at the refracting surface of an interferogram delivered from two interference beams (F1, F2) and forming interference lines parallel to each other along the transverse axis (Ox) of the interferogram within the plane (xOy) of the refracting surface, the array of detection elements being parallel to the plane of the refracting surface and arranged to detect the spatial distribution of the interferogram, wherein the array is a two-dimensional array over an entirety of which the detections elements are disposed equidistantly, and wherein interference lines exhibit an angular shift with the capturing means.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: June 20, 2017
    Assignee: UNIVERSITE DE TECHNOLOGIE DE TROYES
    Inventors: Yassine Hadjar, Sylvain Blaize, Aurelien Bruyant, Gilles Lerondel, Pascal Royer
  • Publication number: 20150116720
    Abstract: The present invention relates to a spectrometer including a diopter (11); capturing means (15, 18) at said diopter (11) of an interferogram (12) originating from two interference beams (F1, F2) and forming interference lines (13) along the transverse axis (Ox) of the interferogram (12) within the plane (xOy) of the diopter (11), said capturing means (15, 18) including a network (18) of detection elements (19) so arranged to detect the spatial distribution of said interferogram (12), characterized in that said network (18) of detection elements (19) is two-dimensional and in that at least a portion of said capturing means (15, 18) and said interferogram (12) are tilted with regard to each other along the transverse axis (Ox) of the interferogram (12). The present invention also relates to a spectroscopic imaging device, including means for emitting two interference beams (F1, F2), and to such a spectrometer.
    Type: Application
    Filed: March 17, 2009
    Publication date: April 30, 2015
    Applicant: UNIVERSITÉ DE TECHNOLOGIE DE TROYES
    Inventors: Yassine Hadjar, Sylvain Blaize, Aurélien Bruyant, Gilles Lerondel, Pascal Royer
  • Patent number: 8958669
    Abstract: The present disclosure relates to a method for manufacturing end microlenses of individual optical fibers which are part of a bundle or a multi-core fiber, including depositing a drop of a photopolymerizable solution on a first end of the bundle; adapting the size of the drop; applying light centered on a predetermined wavelength onto a second end of the bundle in order to selectively polymerize the drop; rinsing the first end using a methanol solution in order to obtain a network of individual optical fibers, each one of which is provided with a microlens at the first end of the multi-core fiber, the microlenses being physically separated from one another. The disclosure additionally relates to a bundle of microlensed fibers obtained by the method, as well as to the use of such a bundle, for example in medical or multiplexed imaging and/or in the coupling of optical fibers.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 17, 2015
    Assignee: Universite de Technologie de Troyes
    Inventors: Jérôme Plain, Renaud Bachelot, Pascal Royer, Xinhua Zeng, Safi Jradi
  • Publication number: 20130202263
    Abstract: The present disclosure relates to a method for manufacturing end microlenses of individual optical fibres which are part of a bundle or a multi-core fibre, including depositing a drop of a photopolymerisable solution on a first end of the bundle; adapting the size of the drop; applying light centred on a predetermined wavelength onto a second end of the bundle in order to selectively polymerise the drop; rinsing the first end using a methanol solution in order to obtain a network of individual optical fibres, each one of which is provided with a microlens at the first end of the multi-core fibre, the microlenses being physically separated from one another. The disclosure additionally relates to a bundle of microlensed fibres obtained by the method, as well as to the use of such a bundle, for example in medical or multiplexed imaging and/or in the coupling of optical fibres.
    Type: Application
    Filed: March 22, 2011
    Publication date: August 8, 2013
    Applicant: UNIVERSITE DE TECHNOLOGIE DE TROYES
    Inventors: Jérôme Plain, Renaud Bachelot, Pascal Royer, Xinhua Zeng, Safi Jradi
  • Patent number: 7705989
    Abstract: A surface plasmon microsensor or a nanosensor for chemical or biological species including pads distributed on the surface of a support, the pads including an electrically conductive material and being capable of immobilizing the chemical or biological species. The pads have a dimension less than 1 ?m.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: April 27, 2010
    Assignee: Commissariat A l'Energie Atomique
    Inventors: Patrick Chaton, Jean-Louis Bijeon, Pascal Royer, Pierre Michel Adam
  • Publication number: 20070115474
    Abstract: A surface plasmon microsensor or a nanosensor for chemical or biological species including pads distributed on the surface of a support, the pads including an electrically conductive material and being capable of immobilizing the chemical or biological species. The pads have a dimension less than 1 ?m.
    Type: Application
    Filed: October 7, 2004
    Publication date: May 24, 2007
    Applicant: COMMISSARIAT A L'ENERGIE
    Inventors: Patrick Chaton, Jean-Louis Bijeon, Pascal Royer, Pierre Adam
  • Patent number: 7058264
    Abstract: The invention concerns monomode or multimode optical fibers provided with a lens with an end taper, obtained by selective photopolymerization of a formulation, and with improved performances through the use of novel parameters and technical processes enabling production of polymer tapers with optimized characteristic required for a wide range of applications. The monomode or multimode optical fibers can, for certain specific applications, be equipped with a metallized polymer taper except for a nanometric opening for sensing or emitting light or a polymer taper whereof the formulation contains fluorescent particles. The novel fibers are essential components in various fields such as telecommunications (high performance connectors) or instrumentation (optical radiation comparator probes for scanning optical microscopy and near-field optical microscopy).
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: June 6, 2006
    Assignee: Universite de Technologie de Troyes
    Inventors: Pascal Royer, Renaud Bachelot, Carole Ecoffet, Daniel-Joseph Lougnot
  • Publication number: 20040264860
    Abstract: The invention concerns monomode or multimode optical fibers provided with a lens with an end taper, obtained by selective photopolymerization of a formulation, and with improved performances through the use of novel parameters and technical processes enabling production of polymer tapers with optimized characteristic required for a wide range of applications. The monomode or multimode optical fibers can, for certain specific applications, be equipped with a metallized polymer taper except for a nanometric opening for sensing or emitting light or a polymer taper whereof the formulation contains fluorescent particles. The novel fibers are essential components in various fields such as telecommunications (high performance connectors) or instrumentation (optical radiation comparator probes for scanning optical microscopy and near-field optical microscopy).
    Type: Application
    Filed: August 27, 2004
    Publication date: December 30, 2004
    Inventors: Pascal Royer, Renaud Bachelot, Carole Ecoffet, Daniel-Joseph Lougnot
  • Patent number: 5256872
    Abstract: The device measures the current intensity in a conductor by FARADAY effect in a monomode optic fiber. It comprises a separator-polarizer formed for example by two coplanar half-disks of polarizing foil, whose polarization directions form a required angle, 90.degree. or 45.degree.. Photodiodes formed by a two-quadrant photodetector in the shape of a disk of the same diameter as that formed by the separator-polarizer, are located behind from the separator-polarizer. The photodiodes are connected to an electronic unit.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: October 26, 1993
    Assignee: Merlin Gerin
    Inventors: Michel Barrault, Pascal Royer, Antoine Kevorkian
  • Patent number: 5235447
    Abstract: Disclosed is a color matrix screen with colored filters in a triad or delta layout. In this layout, the pixels are formed by two adjacent sub-pixels that are aligned along the lines and columns of the matrix, the colored filters of the lines n (n may be odd or even) being arranged according to the sequence A,A, B,B, C,C and the colored filters of the lines n+1 being arranged according to the sequence C,C, A,A, B,B where A,B,C is any combination of red, green, blue with the offset of a sub-pixel at each end of the line, and wherein each column is constituted by two parallel column elements connected to each other at each end, two adjacent sub-pixels of a line with colored filters of a same color being each connected to a different column element Application to liquid crystal screens.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: August 10, 1993
    Assignee: Thomson LCD
    Inventors: Bernard Hepp, Bruno Mourey, Pascal Royer